scholarly journals The Combination Neuroprotective Abilities of Resveratrol and Naringenin in Attenuation of Sleep Deprivation Complications in Rats

2021 ◽  
Vol 10 ◽  
pp. e2315
Author(s):  
Zahra Abbasy ◽  
Hesam Adin Atashi ◽  
Felicia Agatha ◽  
Fatemeh Mirparsa ◽  
Hamid Zaferani Arani ◽  
...  

Background: Sleep loss is one of the most important health problems in the world, and about 30 to 40 percent of ordinary people suffer from it. This study aimed to investigate the neuroprotective effects of the combination of resveratrol and naringenin in attenuation of sleep deprivation (SD) complications in rats. Materials and Methods: In this experimental study, 72 Wistar male rats were randomly divided into three main groups, including control, sham, and 7-days SD group. Each of its main groups consisted of three subgroups, including without drug, vehicle, and combination therapy groups (naringenin [100 mg/kg], resveratrol [100 mg/kg]). The day after the latest injection, the fear conditioning memory tests, locomotor activity test, hot plate, and forced swimming tests (FST) were carried out on all rats, and then sham and SD groups were induced 48 hours of non-REM SD (device off and on, respectively) and these behavioral tests were repeated for all rats again. Finally, the brains of all rats were removed and histopathologically examined, and stained with nissl and TUNNEL. Results: To assess fear condition memory, the rate of latency to first freezing in the visual and auditory phase increased in sham and SD rats that received vehicle or no drug (P<0.001), which indicates memory corruption. Injection of the combination of naringenin and resveratrol reduced the latency to first freezing (P<0.001), which means improved memory. In the FST test, injection of naringenin and resveratrol reduced the rate of immobility (P<0.001), which means improved depressive behavior. The naringenin and resveratrol reduced the pain perception threshold. Also, the naringenin and resveratrol reduced apoptosis compared to the control and vehicle groups (P<0.001). Conclusions: The combination of naringenin and resveratrol compared to other groups could improve memory and mood as well as reduce apoptosis, depression, and pain perception threshold. [GMJ.2021;10:e2315]

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Kang Hyun Leem ◽  
Sang A. Kim ◽  
Hae Jeong Park

Previous studies have shown the therapeutic properties of ginseng and ginsenosides on hyperactive and impulsive behaviors in several psychiatric diseases. Herein, we investigated the effect of Panax ginseng Meyer (PG) on hyperactive/impulsive behaviors in a manic-like animal model, sleep deprivation (SD) rats. Male rats were sleep-deprived for 48 h, and PG (200 mg/kg) was administered for 4 days, from 2 days prior to the start of SD to the end date of SD. The elevated plus maze (EPM) test showed that PG alleviated the increased frequency of entries into and spent time within open arms by SD. In order to investigate the molecular mechanism on this effect of PG, we assessed differentially expressed genes (DEGs) in the prefrontal cortex of PG-treated SD rats using RNA sequencing (RNA-seq) and performed gene-enrichment analysis for DEGs. The gene-enrichment analysis showed that PG most prominently affected the glutamatergic synapse pathway. Among the glutamatergic synapse pathway genes, particularly, PG enhanced the expressions of glutamate transporter Slc1a3 and Slc1a2 reduced in SD rats. Moreover, we found that PG could inhibit the SD-induced phosphorylation of the NR2A subunit of the NMDA receptor. These results suggested that PG might have a therapeutic effect against the manic-like behaviors, regulating the glutamatergic neurotransmission.


2020 ◽  
Vol 15 ◽  
Author(s):  
Samar R. Saleh ◽  
Mariam M. Abady ◽  
Mohammed Nofal ◽  
Nashwa W. Yassa ◽  
Mohamed S. Abdel-latif ◽  
...  

Background: Berberine (BBR), an isoquinoline alkaloid, acts as a multipotent active pharmaceutical ingredient to counteract several types of dementia based on its numerous pharmacological actions including antioxidant, antiinflammatory, cholesterol-lowering effect, and inhibition of Aβ production and AChE. However, BBR suffers from poor absorption, bioavailability and brain drug uptake. The present study is directed for the formulation and characterization of Chitosan BBR-nanoparticles (BBR-NPs) as well as the estimation of its neuroprotective effects against scopolamine induced cognitive impairments. Methods: BBR-NPs were formulated using ionic gelation method and tripolyphosphate was chosen as a cross linker. Nanoparticles size, zeta potential, encapsulation efficiency and releasing profile were estimated. To investigate the neuroprotective effects, adult fifty six Wistar male rats were randomly distributed into: three control groups, received saline, polyethylene glycol or chitosan- NPs respectively; induced group, received scopolamine (2 mg/ kg, i.p.) and three treated groups were orally administrated BBR (50 mg/ kg), BBR- NP (7 mg/ kg) and donepezil (2.25 mg/ kg, as positive control) followed by scopolamine injection after 40 min, daily for 4 weeks. Morris water maze test, oxidative stress parameters, cholinergic and amyloid-β processing intermediates as well as neuroplasticity markers and histopathological examination were assessed. Results: Our results showed that BBR- NPs were better than BBR and donepezil as BBR- NPs were powerful inhibitory ligands toward AChE and Aβ42 formation and significantly down regulated Tau, iNOS and BACE gene expression in rats’ hippocampus. BBR-NPs administration, at 1/6 of BBR therapeutic recommended dose, significantly improved learning and memory function. This could be accredited to the diminution of oxidative stress and amyloid-β toxicity in addition to the improvement of the neuroplasticity markers. Conclusions: The enhancing effect of BBR- NPs could be related to the enhancing of its bioavailability, absorption and brain drug uptake which need more investigation in future work.


2021 ◽  
Vol 22 (7) ◽  
pp. 3604
Author(s):  
Nicola Alessio ◽  
Carmela Belardo ◽  
Maria Consiglia Trotta ◽  
Salvatore Paino ◽  
Serena Boccella ◽  
...  

The bioactive form of vitamin .D, 1,25-dihydroxyvitamin D (1,25D3), exerts immunomodulatory actions resulting in neuroprotective effects potentially useful against neurodegenerative and autoimmune diseases. In fact, vitamin D deficiency status has been correlated with painful manifestations associated with different pathological conditions. In this study, we have investigated the effects of vitamin D deficiency on microglia cells, as they represent the main immune cells responsible for early defense at central nervous system (CNS), including chronic pain states. For this purpose, we have employed a model of low vitamin D intake during gestation to evaluate possible changes in primary microglia cells obtained from postnatal day(P)2-3 pups. Afterwards, pain measurement and microglia morphological analysis in the spinal cord level and in brain regions involved in the integration of pain perception were performed in the parents subjected to vitamin D restriction. In cultured microglia, we detected a reactive—activated and proliferative—phenotype associated with intracellular reactive oxygen species (ROS) generation. Oxidative stress was closely correlated with the extent of DNA damage and increased β-galactosidase (B-gal) activity. Interestingly, the incubation with 25D3 or 1,25D3 or palmitoylethanolamide, an endogenous ligand of peroxisome proliferator-activated-receptor-alpha (PPAR-α), reduced most of these effects. Morphological analysis of ex-vivo microglia obtained from vitamin-D-deficient adult mice revealed an increased number of activated microglia in the spinal cord, while in the brain microglia appeared in a dystrophic phenotype. Remarkably, activated (spinal) or dystrophic (brain) microglia were detected in a prominent manner in females. Our data indicate that vitamin D deficiency produces profound modifications in microglia, suggesting a possible role of these cells in the sensorial dysfunctions associated with hypovitaminosis D.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Analia S Loria ◽  
Michael W Brands ◽  
David M Pollock ◽  
Jennifer S Pollock

We previously reported that maternal separation (MS), a model of early life stress, does not modify baseline blood pressure in adult rats, but increases sensitivity to hypertensive stimuli. Under baseline conditions, adult male rats exposed to MS have significantly reduced glomerular filtration rate (GFR). Acute phenylephrine-induced reductions in renal blood flow is significantly attenuated in rats exposed to MS compared to control rats. Furthermore, norephinephrine (NE) content was increased in renal cortex of MS rats compared to control rats (p<0.05). These data indicate that MS induces increased renal sympathetic outflow. Thus, we hypothesized that renal denervation will normalize GFR in rats exposed to MS. Male WKY rat pups were separated from their mothers for 3 hrs/day during the morning hours from day 2 to 14 of life. Male non-separated littermates served as control rats. Experiments were performed in 300-320 g adult rats. Denervation (DnX) was performed mechanically stripping all visible renal nerves followed by topical phenol (10%) on the renal artery. Control-sham, MS-sham, control-DnX, and MS-DnX rats were instrumented with catheters in the femoral vein and abdominal aorta. Rats were placed in metabolic cages, connected to swivels, and allowed to recover for 4-5 days. Sodium intake was clamped at 2.8 mEq/day in both groups by combining sodium deficient diet and 24 hr/day 0.9% iv saline infusion (20 ml/day). GFR was determined by plasma clearance of [125I]iothalamate in the conscious state. During baseline conditions, MAP was not different between control-sham and MS-sham rats (99±4 vs 97±2 mmHg, respectively). MAP was reduced in both control-DnX and MS-DnX rats (91±2 mmHg and 83±3 mmHg, p<0.05, respectively) compared with the respective sham group. The reduction in MAP tended to be greater in MS than in control rats (-9±1 and -14±2 mmHg, p=0.074). DnX did not modify GFR in control rats (sham: 3.1±0.1 ml/min vs DnX: 3.5±0.4 ml/min). However, DnX significantly increased GFR in rats exposed to MS (sham: 2.4±0.2 ml/min vs DnX: 3.8±0.4 ml/min, p<0.05). These data support our hypothesis that MS induces increased renal sympathetic tone to reduce GFR in MS male rats, and may contribute to the exacerbated response to hypertensive stimuli observed in MS rats.


2014 ◽  
Vol 12 (2) ◽  
pp. 111-117 ◽  
Author(s):  
Jiří Kassa ◽  
Jana Žďárová Karasová ◽  
Kamil Kuča ◽  
Kamil Musílek ◽  
Young-Sik Jung

2017 ◽  
Author(s):  
Kenan Gümüstekin ◽  
Bedri Seven ◽  
Nezihe Karabulut ◽  
Ömer Aktas ◽  
Nesrin Gürsan ◽  
...  

Effects of sleep deprivation (SD), nicotine, and selenium (Se) on woundhealing were studied in 50 male rats (Sprague-Dawley strain). Fullskin-thickness burns were produced in animals. Then, SD, nicotine, andSe administrations were applied to animals in different groups. Woundhealing was assessed by pathological analysis of wound by countingfibroblasts, capillary vessels, polymorphonuclear leucocytes (PNLs), andby measuring radiolabeled immunoglobulin G (IgG) amount in woundarea by radio-pharmaceutical and immunoscintigraphic procedures. Thenumber of fibroblasts and capillary vessels were higher in control andSe groups than in sleep deprivation and nicotine groups, and the numberof PNLs and the radiolabeled polyvalent IgG levels were higher inSD and nicotine groups than in control and Se groups. The resultssuggest that SD and nicotine may delay wound healing and that Sesupplementation may accelerate wound healing by preventing nicotineinducedoxidative stress and lipid peroxidation.


2019 ◽  
Vol 10 (4) ◽  
pp. 313-322
Author(s):  
Farshid Etaee ◽  
◽  
Arezoo Rezvani-Kamran ◽  
Mohammad Taheri ◽  
Ghazaleh Omidi ◽  
...  

Introduction: Methamphetamine (Meth) and Buprenorphine (BUP) modulate pain perception. However, the antinociceptive effects of their interactions, which affect through different systems, are unclear in rats. This study aimed to compare the analgesic effects of Meth, BUP, and their coadministration, as well as the effect of withdrawal from these substances on nociception in male rats. Methods: In this experiment, 40 male Wistar rats (weight: 250-300 g) were categorized into four groups: control, Meth, BUP, or BUP+Meth. After seven days of treatments, the antinociceptive effects were assessed using the hot plate and the tail flick tests. The differences among the groups were analyzed with ANOVA and Tukey’s post hoc tests. P values less than 0.05 were considered significant. Results: Meth and BUP increased the reaction times during the hot plate and tail flick tests. The combination of Meth and BUP increased reaction time more than Meth or BUP alone.  Conclusion: The significantly high reaction times in rats treated with Meth and BUP indicate that these substances have antinociceptive effects. In addition, Meth enhanced the antinociceptive effects of BUP. These synergistic effects might occur through the dopaminergic, serotonergic, and or adrenergic systems.


Cephalalgia ◽  
1996 ◽  
Vol 16 (1) ◽  
pp. 62-66 ◽  
Author(s):  
G Bono ◽  
F Antonaci ◽  
G Sandrini ◽  
E Pucci ◽  
G Nappi ◽  
...  

Pain perception threshold (PFT) in the head was assessed with a pressure algometer in 58 cluster headache (CH) patients (52M, 6F; 41 episodic and 17 chronic). Fourteen patients in cluster period were retested in remission. Thresholds were assessed at 10 symmetrical points on each side of the head and at the deltoid. Compared with controls ( n = 80), CH patients had lower PPT in the head and in the deltoid. PPT was lower on the symptomatic side than on the non-symptomatic side in patients with episodic CH during a cluster period ( p<0.001) and in patients with chronic CH ( p<0.05). This pattern was more evident during a cluster period than during remission ( p<0.05). A reduced PPT did not correlate with illness duration and pain side. The lowest PPT mean values were found at the anterior and intermediate levels of the temporal muscle on the symptomatic side. These results imply a central mechanism underlying the pathogenesis of CH.


2021 ◽  
Author(s):  
Anil Kumar Kalvala ◽  
Arvind Bagde ◽  
Peggy Arthur ◽  
Sunil Kumar Surapaneni ◽  
Ramesh Nimma ◽  
...  

Abstract The purpose of this study was to investigate the neuroprotective effects of phytocannabinoids, synthetic cannabidiol (CBD) and tetrahydrocannabivarin (THCV) and their combination on taxol induced peripheral neuropathy (PIPN) in mice. Briefly, six groups of C57BL/6J mice (n = 6) were used. PTX (8 mg/kg/day, i.p.) was given to the mice on days 1, 3, 5, and 7 to induce neuropathy. Mice were evaluated for their behavioral parameters and also at the end of the study, DRG collected from the animals were subjected to RNA sequence and westernblot analysis. Further, immunocytochemistry and mitochondrial functional assays were performed on cultured DRGs derived from SD rats. The combination of CBD and THCV improved thermal and mechanical neurobehavioral symptoms in mice by two folds as compared to individual treatments. KEGG (RNA Sequencing) identified P38-MAPK, AMPK, and PI3K-AKT pathways as potential CBD and THCV therapeutic targets. In PTX-treated animals, the expression of p-AMPK, SIRT1, NRF2, HO1, SOD2, and catalase was significantly reduced (p<0.001), whereas the expression of PI3K, p-AKT, p-P38 MAP kinase, BAX, TGF-, NLRP3 inflammasome, and caspase 3 was significantly increased (p<0.001) when compared to control group. In reversing these protein expressions, combination therapy outperformed single therapies. CBD and THCV treatment increased AMPK, Catalase, and Complex I expression while decreasing mitochondrial superoxides in DRG primary cultures. In mice and DRG primary cultures, WAY100135 and rimonabant inhibited the effects of CBD and THCV by blocking 5 HT1A and CB1 receptors. In conclusion, entourage effect of CBD and THCV combination against PIPN appears to protect neurons in mice by modulating 5HT1A and CB1 receptors, respectively.


Sign in / Sign up

Export Citation Format

Share Document