scholarly journals Bovine Muc1 is a highly polymorphic gene encoding an extensively glycosylated mucin that binds bacteria

2009 ◽  
Vol 92 (10) ◽  
pp. 5276-5291 ◽  
Author(s):  
L. Sando ◽  
R. Pearson ◽  
C. Gray ◽  
P. Parker ◽  
R. Hawken ◽  
...  
2003 ◽  
Vol 197 (11) ◽  
pp. 1489-1500 ◽  
Author(s):  
Yoshiki Akatsuka ◽  
Tetsuya Nishida ◽  
Eisei Kondo ◽  
Mikinori Miyazaki ◽  
Hirohumi Taji ◽  
...  

We report the identification of two novel minor histocompatibility antigens (mHAgs), encoded by two separate single nucleotide polymorphisms on a single gene, BCL2A1, and restricted by human histocompatibility leukocyte antigen (HLA)-A*2402 (the most common HLA-A allele in Japanese) and B*4403, respectively. Two cytotoxic T lymphocyte (CTL) clones specific for these mHAgs were first isolated from two distinct recipients after hematopoietic cell transplantation. Both clones lyse only normal and malignant cells within the hematopoietic lineage. To localize the gene encoding the mHAgs, two-point linkage analysis was performed on the CTL lytic patterns of restricting HLA-transfected B lymphoblastoid cell lines obtained from Centre d'Etude du Polymorphisme Humain. Both CTL clones showed a completely identical lytic pattern for 4 pedigrees and the gene was localized within a 3.6-cM interval of 15q24.3–25.1 region that encodes at least 46 genes. Of those, only BCL2A1 has been reported to be expressed in hematopoietic cells and possess three nonsynonymous nucleotide changes. Minigene transfection and epitope reconstitution assays with synthetic peptides identified both HLA-A*2402– and B*4403-restricted mHAg epitopes to be encoded by distinct polymorphisms within BCL2A1.


Genes ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 220 ◽  
Author(s):  
Md. Rafiqul Islam ◽  
Mohammad Rashed Hossain ◽  
Denison Michael Immanuel Jesse ◽  
Hee-Jeong Jung ◽  
Hoy-Taek Kim ◽  
...  

Bacterial fruit blotch (BFB) causes losses in melon marketable yield. However, until now, there has been no information about the genetic loci responsible for resistance to the disease or their pattern of inheritance. We determined the inheritance pattern of BFB resistance from a segregating population of 491 F2 individuals raised by crossing BFB-resistant (PI 353814) and susceptible (PI 614596) parental accessions. All F1 plants were resistant to Acidovorax citrulli strain KACC18782, and F2 plants segregated with a 3:1 ratio for resistant and susceptible phenotypes, respectively, in a seedling bioassay experiment, indicating that BFB resistance is controlled by a monogenic dominant gene. In an investigation of 57 putative disease-resistance related genes across the melon genome, only the MELO3C022157 gene (encoding TIR-NBS-LRR domain), showing polymorphism between resistant and susceptible parents, revealed as a good candidate for further investigation. Cloning, sequencing and quantitative RT-PCR expression of the polymorphic gene MELO3C022157 located on chromosome 9 revealed multiple insertion/deletions (InDels) and single nucleotide polymorphisms (SNPs), of which the SNP A2035T in the second exon of the gene caused loss of the LRR domain and truncated protein in the susceptible accession. The InDel marker MB157-2, based on the large (504 bp) insertion in the first intron of the susceptible accession, was able to distinguish resistant and susceptible accessions among 491 F2 and 22 landraces/inbred accessions with 98.17% and 100% detection accuracy, respectively. This novel PCR-based, co-dominant InDel marker represents a practical tool for marker-assisted breeding aimed at developing BFB-resistant melon accessions.


2000 ◽  
Vol 182 (21) ◽  
pp. 6183-6191 ◽  
Author(s):  
Phillip I. Tarr ◽  
Laura M. Schoening ◽  
Yoo-Lee Yea ◽  
Teresa R. Ward ◽  
Srdjan Jelacic ◽  
...  

ABSTRACT The rfb region specifies the structure of lipopolysaccharide side chains that comprise the diverse gram-negative bacterial somatic (O) antigens. The rfb locus is adjacent to gnd, which is a polymorphic gene encoding 6-phosphogluconate dehydrogenase. To determine if rfb andgnd cotransfer, we sequenced gnd in five O55 and 13 O157 strains of Escherichia coli. E. coli O157:H7 has a gnd allele (allele A) that is only 82% identical to the gnd allele (alleleD) of closely related E. coli O55:H7. In contrast, gnd alleles of E. coli O55 in distant lineages are >99.9% identical to gnd alleleD. Though gnd alleles B andC in E. coli O157 that are distantly related toE. coli O157:H7 are more similar to allele Athan to allele D, there are nucleotide differences at 4 to 6% of their sites. Alleles B and C can be found in E. coli O157 in different lineages, but we have found allele A only in E. coli O157 belonging to the DEC5 lineage. DNA 3′ to the O55 gnd allele in diverse E. coli lineages has sequences homologous totnpA of the Salmonella enterica serovar Typhimurium IS200 element, E. coli Rhs elements (including an H-rpt gene), and portions of the O111 and O157rfb regions. We conclude that rfb andgnd cotransferred into E. coli O55 and O157 in widely separated lineages and that recombination was responsible for recent antigenic shifts in the emergence of pathogenic E. coli O55 and O157.


Author(s):  
Hui Li ◽  
Erin Cvejic ◽  
Ben Gu ◽  
Ute Vollmer-Conna ◽  
Ian Hickie ◽  
...  

Abstract Background The acute sickness response to infection is a stereotyped set of illness manifestations initiated by proinflammatory signals in the periphery but mediated centrally. P2RX7 is a highly polymorphic gene encoding an ATP-gated cationic pore, widely expressed on immune cells and the brain, and regulating the NLRP3 inflammasome, as well as diverse neural functions. Methods Associations between P2RX7 genotype, pore activity, and illness manifestations were examined in a cohort with acute viral and bacterial infections (n = 484). Genotyping of 12 P2RX7 function-modifying single-nucleotide polymorphisms (SNPs) was used to identify haplotypes and diplotypes. Leucocyte pore activity was measured by uptake of the fluorescent dye, YO-PRO-1, and by ATP-induced interleukin-1β (IL-1β) release. Associations were sought with scores describing the symptom domains, or endophenotypes, derived from principal components analysis. Results Among the 12 SNPs, a 4-SNP haplotype block with 5 variants was found in 99.5% of the subjects. These haplotypes and diplotypes were closely associated with variations in pore activity and IL-1β production. Homozygous diplotypes were associated with overall illness severity as well as fatigue, pain, and mood disturbances. Conclusions P2RX7 signaling plays a significant role in the acute sickness response to infection, likely acting in both the immune system and the brain.


2011 ◽  
Vol 81 (4) ◽  
pp. 240-244 ◽  
Author(s):  
Mary Ward ◽  
Carol P Wilson ◽  
J J Strain ◽  
Geraldine Horigan ◽  
John M. Scott ◽  
...  

Hypertension is a leading risk factor for cardiovascular disease (CVD) and stroke. A common polymorphism in the gene encoding the enzyme methylenetetrahydrofolate reductase (MTHFR), previously identified as the main genetic determinant of elevated homocysteine concentration and also recognized as a risk factor for CVD, appears to be independently associated with hypertension. The B-vitamin riboflavin is required as a cofactor by MTHFR and recent evidence suggests it may have a role in modulating blood pressure, specifically in those with the homozygous mutant MTHFR 677 TT genotype. If studies confirm that this genetic predisposition to hypertension is correctable by low-dose riboflavin, the findings could have important implications for the management of hypertension given that the frequency of this polymorphism ranges from 3 to 32 % worldwide.


1992 ◽  
Vol 84 (4) ◽  
pp. 561-567 ◽  
Author(s):  
Poul E. Jensen ◽  
Michael Kristensen ◽  
Tine Hoff ◽  
Jan Lehmbeck ◽  
Bjarne M. Stummann ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document