scholarly journals Effects of oregano essential oil on in vitro ruminal fermentation, methane production, and ruminal microbial community

2020 ◽  
Vol 103 (3) ◽  
pp. 2303-2314 ◽  
Author(s):  
Rui Zhou ◽  
Jianping Wu ◽  
Xia Lang ◽  
Lishan Liu ◽  
David P. Casper ◽  
...  
Author(s):  
Haihao Huang ◽  
Malgorzata Szumacher-Strabel ◽  
Amlan Kumar Patra ◽  
Sylwester Ślusarczyk ◽  
Dorota Lechniak ◽  
...  

2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 461-461
Author(s):  
Jordan L Cox-O’Neill ◽  
Vivek Fellner ◽  
Alan J Franluebbers ◽  
Deidre D Harmon ◽  
Matt H Poore ◽  
...  

Abstract Ruminant animal performance has been variable in studies grazing annual cool-season grass and brassica monocultures and mixtures. There is little understanding of the fermentation mechanisms causing variation. The aim of this study was to determine apparent dry matter (DM) digestibility, methane, and volatile fatty acid (VFA) concentration from different proportions of cereal rye (Secale cereal; R) and turnip (Brassica rapa L.; T) (0R:100T, 40R:60T, 60R:40T, and 100R:0T) via in vitro batch fermentation. Freeze-dried forage samples from an integrated crop-livestock study was assembled into the four treatments with a 50:50 leaf to root ratio for turnip. Measurements were made following a 48 hr fermentation with 2:1 buffer and ruminal fluid inoculum. Data were analyzed using Mixed Procedure of SAS with batch (replicate) and treatment (main effect) in the model; differences were declared at P ≤ 0.05, with tendencies declared at > 0.05 but < 0.10. Rumen apparent DM digestibility (26.8%; overall mean) was not different among treatments. Methane production was less (P < 0.01) with inclusion of turnip ranging from 774 nmol/ml for 0R:100T to 1416 nmol/ml for 100R:0T. Total VFA production, acetate to propionate ratio, acetate, and valerate were not affected by forage treatments (117 mM, 1.45, 39.84 mol/100 mol, and 7.86 mol/100 mol, respectively; overall mean). Propionate, isobutyrate, and isovalerate concentrations were greater and butyrate concentration less with greater (P < 0.01) proportions of rye in the mixture. No effect of R:T ratio on digestibility or total VFA production along with the observed differences in individual VFA concentration do not explain variable response in grazing animals. Additionally, methane production results indicate that grazing turnips could potentially reduce methane production and thus reduce ruminant livestock’s contribution to greenhouse gas emissions.


1970 ◽  
Vol 46 (3) ◽  
pp. 325-335
Author(s):  
E. Maleki ◽  
G.Y. Meng ◽  
M. Faseleh Jahromi ◽  
R. Jorfi ◽  
A. Khoddami ◽  
...  

The objective of this study was to determine the effect of pomegranate (Punica granatum L.) seed oil (PSO) on gas and methane (CH4) production, ruminal fermentation and microbial populations under in vitro conditions. Three treatments consisting of a control diet containing 10 mg tallow (CON); the control diet with 5 mg PSO + 5 mg tallow (MPSO) and the control diet containing 10 mg PSO (HPSO) were compared. Ten mg of the experimental fat/oil samples were inserted into a gas-tight 100 mL plastic syringe containing 30 mL of an incubation inoculum and 250 mg of a basic substrate of a hay/concentrate (1/1, w/w) mixture. In vitro gas production was recorded over 0, 2, 4, 6, 8, 10, 12 and 24 h of incubation. After 24 hours, incubation was stopped, and methane production, pH, volatile fatty acids (VFAs) and microbial counts were measured in the inoculant. Gas production at 4, 6, 8, 10, 12 and 24 h incubation, metabolizable energy and in vitro organic matter disappearance increased linearly and quadratically as level of PSO increased. Furthermore, the 10 mg PSO (HPSO) decreased CH4 production by 21.0% compared with the control (CON) group. There were no significant differences in total and individual VFA concentrations between different levels of PSO, except for butyric acid. After 24 h of incubation, methanogenesis decreased in the HPSO compared with the MPSO and CON treatments. In addition, total bacteria and protozoa counts increased with rising PSO levels, while population methanogenesis declined significantly. These results suggested that PSO could reduce methane emissions, which might be beneficial to nutrient utilization and growth in ruminants.


Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 614
Author(s):  
María Melissa Gutiérrez-Pacheco ◽  
Luis Alberto Ortega-Ramírez ◽  
Brenda Adriana Silva-Espinoza ◽  
Manuel Reynaldo Cruz-Valenzuela ◽  
Gustavo Adolfo González-Aguilar ◽  
...  

The objective of the present study is to evaluate the effect of individual and combined coatings of chitosan (0.008 g·mL−1) and carnauba wax (0.1 g·mL−1) with oregano essential oil (OEO, 0.08 g·mL−1) to reduce dehydration and microbial decay of fresh cucumbers stored at 10 °C. Chitosan-OEO-wax films showed the lowest water vapor transmission rate (0.141 g·m−2·h−1), compared to single chitosan films (0.257 g·m−2·h−1). While chitosan-OEO films completely inhibited the in vitro growth of Alternaria alternata and reduced the growth of Salmonella Typhimurium, Escherichia coli O157:H7, mesophilic bacteria, and fungi isolated from decayed cucumbers. Besides, the infrared analysis of chitosan-OEO-wax films showed shifts in O–H and N–H absorption bands, indicating possible hydrogen bonding between the components. Wax and wax-OEO were the most effective coatings to prevent weight loss in cucumbers during 15 days of storage at 10 °C, while the most effective antimicrobial treatments were chitosan and chitosan-OEO. Therefore, these results showed that carnauba wax and carnauba wax-OEO coatings were the most effective in weight loss, whereas chitosan and chitosan-OEO were the most effective to reduce the microbial load of the treated fresh cucumber.


2018 ◽  
Vol 10 (8) ◽  
pp. 156
Author(s):  
Sofia Magalhaes Moreira ◽  
Claudia Braga Pereira Bento ◽  
Analice Claudia Azevedo ◽  
Hilario C. Mantovani

Antibiotics are used as feed additives for cattle to alter rumen fermentation and increase weight gain. However, this practice can potentially lead to the presence of antibiotic residues in milk and meat and the selection of multiresistant bacteria. Bacteriocins have been suggested as an alternative to antibiotics used in animal production. This work aimed to evaluate the in vitro effects of bovicin HC5 and virginiamycin on ruminal fermentation and on microbial community composition. Ruminal fluid was collected from fistulated cows fed corn silage and incubated with Trypticase (15 g L-1). Cultures treated with bovicin HC5 or virginiamycin decreased (P < 0.05) ammonia accumulation by 47.46% and 66.17%, respectively. Bovicin HC5 and virginiamycin also decreased (P < 0.05) the concentration of organic acids and gas production, but the effects were somewhat distinct. Molecular fingerprinting of the microbial community using PCR-DGGE revealed that community structure varied between treatments and were distinct from the controls. These results demonstrate that bovicin HC5 and virginiamycin have distinct effects on ruminal fermentation and modify differently the microbial community composition. These results also expand the knowledge about the effects of antibiotics and bacteriocins on bacterial and archaeal communities involved in protein metabolism in the rumen.


Sign in / Sign up

Export Citation Format

Share Document