Analysis of the operating conditions of a hydraulic turbine of the bulb-type

Author(s):  
Adriano Delmaschio Cella ◽  
Maicon Maciel Ferreira De Araújo ◽  
Cléver Reis Stein

In the last decades we have witnessed a technological advance and the search for 4.0 technologies, in this scenario, one of the most important topics to promote a good performance in the production of equipment is the monitoring of operation through preventive maintenance, especially for large industrial enterprises. In this article we present a dynamic test and an analysis of the operating conditions of a hydraulic turbine of the bulb-type operating with a production level of 70 MW. The results demonstrate the vibrations at different points of the equipment and the frequency of turning of the blades. Through these results it was possible to demonstrate the operating condition of the device.

Author(s):  
P.V. SURESH ◽  
DIPAK CHAUDHURI

Preventive maintenance of any system should depend on its starting, ending and operating conditions. Systems working with a minimum permissible reliability should be maintained at predetermined points to ensure its reliability do not fall below the permissible level. For any period, the starting condition of a system and the operating condition can be specified using fuzzy sets. Since the condition of the system at the end of a period depends on its starting condition and the operating condition during the period, linguistic variables are also required to specify it. This paper describes how to select periods of maintenance and the types of maintenance for such a system. The model utilizes the fuzzy set theory to determine the period length and the type of maintenance.


Author(s):  
Larysa Bodnar ◽  
Petro Koval ◽  
Sergii Stepanov ◽  
Liudmyla Panibratets

A significant part of Ukrainian bridges on public roads is operated for more than 30 years (94 %). At the same time, the traffic volume and the weight of vehicles has increased significantly. Insufficient level of bridges maintenance funding leads to the deterioration of their technical state. The ways to ensure reliable and safe operation of bridges are considered. The procedure for determining the predicted operational status of the elements and the bridge in general, which has a scientific novelty, is proposed. In the software complex, Analytical Expert Bridges Management System (AESUM), is a function that allows tracking the changes in the operational status of bridges both in Ukraine and in each region separately. The given algorithm of the procedure for determining the predicted state of the bridge using a degradation model is described using the Nassie-Schneidermann diagram. The model of the degradation of the bridge performance which is adopted in Ukraine as a normative one, and the algorithm for its adaptation to the AESUM program complex with the function to ensure the probabilistic predicted operating condition of the bridges in the automatic mode is presented. This makes it possible, even in case of unsatisfactory performance of surveys, to have the predicted lifetime of bridges at the required time. For each bridge element it is possible to determine the residual time of operation that will allow predict the state of the elements of the structure for a certain period of time in the future. Significant interest for specialists calls for the approaches to the development of orientated perspective plans for bridge inspection and monitoring of changes in the operational status of bridges for 2009-2018 in Ukraine. For the analysis of the state of the bridge economy, the information is available on the distribution of bridges by operating state related to the administrative significance of roads, by road categories and by materials of the structures. Determining the operating state of the bridge is an important condition for making the qualified decisions as regards its maintenance. The Analytical Expert Bridges Management System (AESUM) which is implemented in Ukraine, stores the data on the monitoring the status of bridges and performs the necessary procedures to maintain them in a reliable and safe operating condition. An important result of the work is the ability to determine the distribution of bridges on the public roads of Ukraine, according to operating conditions established in the program complex of AESUM, which is presented in accordance with the data of the current year. In conditions of limited funding and in case of unsatisfactory performance of surveys, it is possible to make the reasonable management decisions regarding the repair and the reconstruction of bridges. Keywords: bridge management system, operating condition, predicted operating condition, model of degradation, bridge survey plan, highway bridge.


Author(s):  
Men Wirz ◽  
Matthew Roesle ◽  
Aldo Steinfeld

Thermal efficiencies of the solar field of two different parabolic trough concentrator (PTC) systems are evaluated for a variety of operating conditions and geographical locations, using a detailed 3D heat transfer model. Results calculated at specific design points are compared to yearly average efficiencies determined using measured direct normal solar irradiance (DNI) data as well as an empirical correlation for DNI. It is shown that the most common choices of operating conditions at which solar field performance is evaluated, such as the equinox or the summer solstice, are inadequate for predicting the yearly average efficiency of the solar field. For a specific system and location, the different design point efficiencies vary significantly and differ by as much as 11.5% from the actual yearly average values. An alternative simple method is presented of determining a representative operating condition for solar fields through weighted averages of the incident solar radiation. For all tested PTC systems and locations, the efficiency of the solar field at the representative operating condition lies within 0.3% of the yearly average efficiency. Thus, with this procedure, it is possible to accurately predict year-round performance of PTC systems using a single design point, while saving computational effort. The importance of the design point is illustrated by an optimization study of the absorber tube diameter, where different choices of operating conditions result in different predicted optimum absorber diameters.


Author(s):  
Nobuhiko Fukuda ◽  
Satoshi Someya ◽  
Koji Okamoto

It is thought that the pressure fluctuation can occur due to the interaction between flow through guide vanes and flow into runner blades, resulting in a vibration of turbine and a blade cracking, in a hydraulic turbine operated in a wide range for flexible power demand. High accurate velocity measurement with high time/spatial resolution can help to clarify the mechanism of the interaction and to provide good experimental data for the validation of numerical procedure. So the aim of present study is to estimate the unstable velocity field quantitatively in the area between guide vanes and runner blades, using high time-resolved particle image velocimetry (PIV). Two types of velocity measurements were carried out, i.e., phase-locked measurement and high time sequential velocity measurement, in a pump-turbine model with 20 guide vanes and 6 runner blades. The characteristic of the flow field varied corresponding to the operating conditions such as flow rate and rotational speed. Opening angles of guide vanes were kept uniform. A clockwise vortex was generated at inside of the runner blade under smaller rotational speed. A counterclockwise vortex was separated at the backside of the runner blade under higher rotational speed. At any operating conditions, the velocity between guide vanes and runner blades oscillated periodically at the blade passing frequency.


2020 ◽  
Vol 29 (4) ◽  
pp. 32-41
Author(s):  
L. P. Vogman ◽  
D. A. Korolchenko ◽  
A. V. Khryukin

Introduction. Determination of the scientifi cally substantiated frequency of cleaning the ducts of local exhausts of industrial buildings and structures is one of the tasks in the fi eld of fi re safety of industrial enterprises. The paper describes design methods, in particular, a method for determination of the induction period during spontaneous combustion of dust deposits in air ducts of ventilation systems and equipment, which can be used in solving problems focused on the development of preventive measures to ensure their fi re and explosion safety.Methods. In order to solve the problem set in this paper and compare the indicators obtained in the calculation and analytical part of the studies with the growth dynamics of deposits in real facilities, fi eld tests have been accomplished in the production facilities of the fl our mill of OJSC MK “Voronezhsky” and JSC Concern “Sozvezdiye”.Results and discussion. The timeframes for cleaning of deposits on ventilation (aspiration) equipment of buildings and structures cannot be universal for various industries and must take into account the dynamics of the growth of deposits depending on the specifi cs of combustible deposits, the workload of the production facilities of the protected object in a given period of time, and the operating conditions of the equipment. As a result of the experiments, it was found that the places of maximum accumulations of deposits are most often formed on the surfaces of joints and on the bends of pipelines of ventilation systems. The conditions of spontaneous combustion of combustible dust are studied by calculation and analytical method, depending on such process characteristics as the speed of the dust-air mixture fl ow in the duct, as well as the diameter of the duct’s cross section.Conclusions. The nomograms built on the basis of the studies performed can be used to determine the multiplicity of cleaning of combustible dusts of equipment and air ducts of industrial ventilation systems. The paper provides a calculation of the period of induction of spontaneous combustion of combustible dust deposits using the example of rye fl our with asymmetric heat transfer. Its signifi cance is due to the process of accumulation of deposits of combustible dust to a critical thickness in terms of spontaneous combustion conditions.


2018 ◽  
Vol 180 ◽  
pp. 02090 ◽  
Author(s):  
Pavel Rudolf ◽  
Jiří Litera ◽  
Germán Alejandro Ibarra Bolanos ◽  
David Štefan

Vortex rope, which induces substantial pressure pulsations, arises in the draft tube (diffuser) of Francis turbine for off-design operating conditions. Present paper focuses on mitigation of those pulsations using active water jet injection control. Several modifications of the original Susan-Resiga’s idea were proposed. All modifications are driven by manipulation of the shear layer region, which is believed to play important role in swirling flow instability. While some of the methods provide results close to the original one, none of them works in such a wide range. Series of numerical experiments support the idea that the necessary condition for vortex rope pulsation mitigation is increasing the fluid momentum along the draft tube axis.


Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 598 ◽  
Author(s):  
Łukasz Warguła ◽  
Mateusz Kukla ◽  
Piotr Krawiec ◽  
Bartosz Wieczorek

Branch chipping machines with low-power engines are distinguished with an intermittent operation due to a periodical supply of branches. A conventional drive speed control of these machines is not adapted to adjust the operating mode depending on frequency of material supply for shredding. This article discusses the issues related to the assessment of the application of adaptive systems similar in design to start–stop systems used in vehicles, as necessary in the driving of this type machine. During testing, an impact of a distance between a branch pile from the woodchipper, a number of operators on frequency of drive unit operating condition changes, and the mass and volume output (productivity) were considered. A percentage ratio of the active and passive (idle) operation in selected conditions of use was also determined. A low-power 9.5 kW engine-powered cylindrical-type woodchipper was used for testing. Material chopped in the chipper was freshly cut branches of oaks (Quercus L. Sp. Pl. 994. 1753) with a diameter in the largest cross-section ca. 80 mm and moisture content ca. 25%. Piles of branches were located at three different distances from the chipper, i.e., 3 m, 9 m and 15 m. Branches to the chipper were fed by one or two operators. It was demonstrated that the idle run time in tested conditions with one operator could be from 43% to 71% of the entire operating time. Frequency of operating condition changes when only one operator worked and fluctuated from ca. 6 to 2 times per minute. Increasing the number of operators from one to two had a slight impact on the frequency of operating condition changes (by ca. 7%) at the shortest distance from the chipper (3 m). However, at larger distances, the additional operator may increase the frequency of operating condition changes of the chipper by 77% for 9 m distance and 85% for 15 m distance. The mass and volumetric output of the cylindrical chipper in the most advantageous case is equal to 0.66 t/h and 3.5 m3/h, respectively. The increase of the branch pile distance from the chipper causes a drop in mass output by 32%, and volumetric output by 33.5%. The results of the tests confirmed the necessity for the development of low-power chipping machines designed for clearing operations rather than industrial production of biomass. A direction for development could be systems that adapt driving units to operating conditions, depending on a demand for the chipping process.


2020 ◽  
Vol 10 (2) ◽  
pp. 673
Author(s):  
Jiancheng Yin ◽  
Huailiang Zheng ◽  
Yuantao Yang ◽  
Minqiang Xu

The life prediction is crucial to guarantee the reliability and safety of the mechanical system. The current prediction methods predict the life only based on the historical usage pattern of the mechanical system, and do not consider the mission profile of the future working process. To realize the life prediction with considering the switching of mission profile, which is composed of different operating conditions, this paper proposes a new prediction scheme on the base of the similarity trajectory method (STM). Two main improvements are employed. First, the reference degradation models are constructed according to the predicted trend of each constant operating condition obtained by the relevance vector machine (RVM). Secondly, the life under specific mission profile is calculated through weighted aggregating the life of each constant operating condition. The proposed method is validated by a turbofan engine simulation data. The results show that the proposed method achieves an excellent predicted result, in which the predicted result is close to the actual result. In addition, the proposed method can deal with the problem of mission profile switching.


2018 ◽  
Vol 8 (12) ◽  
pp. 2505 ◽  
Author(s):  
Jean Decaix ◽  
Vlad Hasmatuchi ◽  
Maximilian Titzschkau ◽  
Cécile Münch-Alligné

Due to the integration of new renewable energies, the electrical grid undergoes instabilities. Hydroelectric power plants are key players for grid control thanks to pumped storage power plants. However, this objective requires extending the operating range of the machines and increasing the number of start-up, stand-by, and shut-down procedures, which reduces the lifespan of the machines. CFD based on standard URANS turbulence modeling is currently able to predict accurately the performances of the hydraulic turbines for operating points close to the Best Efficiency Point (BEP). However, far from the BEP, the standard URANS approach is less efficient to capture the dynamics of 3D flows. The current study focuses on a hydraulic turbine, which has been investigated at the BEP and at the Speed-No-Load (SNL) operating conditions. Several “advanced” URANS models such as the Scale-Adaptive Simulation (SAS) SST k - ω and the BSL- EARSM have been considered and compared with the SST k - ω model. The main conclusion of this study is that, at the SNL operating condition, the prediction of the topology and the dynamics of the flow on the suction side of the runner blade channels close to the trailing edge are influenced by the turbulence model.


Author(s):  
Ilias Bosdas ◽  
Michel Mansour ◽  
Anestis I. Kalfas ◽  
Reza S. Abhari ◽  
Shigeki Senoo

Modern steam turbines need to operate efficiently and safely over a wide range of operating conditions. This paper presents a unique unprecedented set of time-resolved steam flowfield measurements from the exit of the last two stages of a low pressure (LP) steam turbine under various volumetric massflow conditions. The measurements were performed in the steam turbine test facility in Hitachi city in Japan. A newly developed fast response probe equipped with a heated tip to operate in wet steam flows was used. The probe tip is heated through an active control system using a miniature high-power cartridge heater developed in-house. Three different operating points, including two reduced massflow conditions, are compared and a detailed analysis of the unsteady flow structures under various blade loads and wetness mass fractions is presented. The measurements show that at the exit of the second to last stage the flow field is highly three dimensional. The measurements also show that the secondary flow structures at the tip region (shroud leakage and tip passage vortices) are the predominant sources of unsteadiness at 85% span. The high massflow operating condition exhibits the highest level of periodical total pressure fluctuation compared to the reduced massflow conditions at the inlet of the last stage. In contrast at the exit of the last stage, the reduced massflow operating condition exhibits the largest aerodynamic losses near the tip. This is due to the onset of the ventilation process at the exit of the LP steam turbine. This phenomenon results in 3 times larger levels of relative total pressure unsteadiness at 93% span, compared to the high massflow condition. This implies that at low volumetric flow conditions the blades will be subjected to higher dynamic load fluctuations at the tip region.


Sign in / Sign up

Export Citation Format

Share Document