Brain shift during bur hole–based procedures using interventional MRI

2014 ◽  
Vol 121 (1) ◽  
pp. 149-160 ◽  
Author(s):  
Michael E. Ivan ◽  
Jay Yarlagadda ◽  
Akriti P. Saxena ◽  
Alastair J. Martin ◽  
Philip A. Starr ◽  
...  

Object Brain shift during minimally invasive, bur hole–based procedures such as deep brain stimulation (DBS) electrode implantation and stereotactic brain biopsy is not well characterized or understood. We examine shift in various regions of the brain during a novel paradigm of DBS electrode implantation using interventional imaging throughout the procedure with high-field interventional MRI. Methods Serial MR images were obtained and analyzed using a 1.5-T magnet prior to, during, and after the placement of DBS electrodes via frontal bur holes in 44 procedures. Three-dimensional coordinates in MR space of unique superficial and deep brain structures were recorded, and the magnitude, direction, and rate of shift were calculated. Measurements were recorded to the nearest 0.1 mm. Results Shift ranged from 0.0 to 10.1 mm throughout all structures in the brain. The greatest shift was seen in the frontal lobe, followed by the temporal and occipital lobes. Shift was also observed in deep structures such as the anterior and posterior commissures and basal ganglia; shift in the pallidum and subthalamic region ipsilateral to the bur hole averaged 0.6 mm, with 9% of patients having over 2 mm of shift in deep brain structures. Small amounts of shift were observed during all procedures; however, the initial degree of shift and its direction were unpredictable. Conclusions Brain shift is continual and unpredictable and can render traditional stereotactic targeting based on preoperative imaging inaccurate even in deep brain structures such as those used for DBS.

2007 ◽  
Vol 107 (5) ◽  
pp. 989-997 ◽  
Author(s):  
Yasushi Miyagi ◽  
Fumio Shima ◽  
Tomio Sasaki

Object The goal of this study was to focus on the tendency of brain shift during stereotactic neurosurgery and the shift's impact on the unilateral and bilateral implantation of electrodes for deep brain stimulation (DBS). Methods Eight unilateral and 10 bilateral DBS electrodes at 10 nuclei ventrales intermedii and 18 subthalamic nuclei were implanted in patients at Kaizuka Hospital with the aid of magnetic resonance (MR) imaging–guided and microelectrode-guided methods. Brain shift was assessed as changes in the 3D coordinates of the anterior and posterior commissures (AC and PC) with MR images before and immediately after the implantation surgery. The positions of the implanted electrodes, based on the midcommissural point and AC–PC line, were measured both on x-ray films (virtual position) during surgery and the postoperative MR images (actual position) obtained on the 7th day postoperatively. Results Contralateral and posterior shift of the AC and PC were the characteristics of unilateral and bilateral procedures, respectively. The authors suggest the following. 1) The first unilateral procedure elicits a unilateral air invasion, resulting in a contralateral brain shift. 2) During the second procedure in the bilateral surgery, the contralateral shift is reset to the midline and, at the same time, the anteroposterior support by the contralateral hemisphere against gravity is lost due to a bilateral air invasion, resulting in a significant posterior (caudal) shift. Conclusions To note the tendency of the brain to shift is very important for accurate implantation of a DBS electrode or high frequency thermocoagulation, as well as for the prediction of therapeutic and adverse effects of stereotactic surgery.


2018 ◽  
Vol 17 (3) ◽  
pp. E124-E129 ◽  
Author(s):  
Jiri Bartek ◽  
Gerald Cooray ◽  
Mominul Islam ◽  
Margret Jensdottir

Abstract BACKGROUND AND IMPORTANCE Stereotactic brain biopsy (SB) is an important part of the neurosurgical armamentarium, with the possibility of achieving histopathological diagnosis in otherwise inaccessible lesions of the brain. Nevertheless, the procedure is not without the risk of morbidity, which is especially true for lesions in eloquent parts of the brain, where even a minor adverse event can result in significant deficits. Navigated transcranial magnetic stimulation (nTMS) is widely used to chart lesions in eloquent areas, successfully guiding maximal safe resection, while its potential role in aiding with the planning of a stereotactic biopsy is so far unexplored. CLINICAL PRESENTATION Magnetic resonance imaging of a 67-yr-old woman presenting with dysphasia revealed a noncontrast enhancing left-sided lesion in the frontal and parietal pars opercularis. Due to the location of the lesion, nTMS was used to chart both primary motor and language cortex, utilizing this information to plan a safe SB trajectory and sampling area according to the initial work-up recommendations from the multidisciplinary neuro-oncology board. The SB was uneventful, with histology revealing a ganglioglioma, WHO I. The patient was discharged the following day, having declined to proceed with tumor resection (awake surgery) due to the non-negligible risk of morbidity. Upon 1- and 3-mo follow-up, she showed no signs of any procedure-related deficits. CONCLUSION nTMS can be implemented to aid with the planning of a stereotactic biopsy procedure in eloquent areas of the brain, and should be considered part of the neurosurgical armamentarium.


2012 ◽  
Vol 44 (15) ◽  
pp. 778-785 ◽  
Author(s):  
Jacqueline A. Gleave ◽  
Michael D. Wong ◽  
Jun Dazai ◽  
Maliha Altaf ◽  
R. Mark Henkelman ◽  
...  

The structural organization of the brain is important for normal brain function and is critical to understand in order to evaluate changes that occur during disease processes. Three-dimensional (3D) imaging of the mouse brain is necessary to appreciate the spatial context of structures within the brain. In addition, the small scale of many brain structures necessitates resolution at the ∼10 μm scale. 3D optical imaging techniques, such as optical projection tomography (OPT), have the ability to image intact large specimens (1 cm3) with ∼5 μm resolution. In this work we assessed the potential of autofluorescence optical imaging methods, and specifically OPT, for phenotyping the mouse brain. We found that both specimen size and fixation methods affected the quality of the OPT image. Based on these findings we developed a specimen preparation method to improve the images. Using this method we assessed the potential of optical imaging for phenotyping. Phenotypic differences between wild-type male and female mice were quantified using computer-automated methods. We found that optical imaging of the endogenous autofluorescence in the mouse brain allows for 3D characterization of neuroanatomy and detailed analysis of brain phenotypes. This will be a powerful tool for understanding mouse models of disease and development and is a technology that fits easily within the workflow of biology and neuroscience labs.


2014 ◽  
Vol 111 (5) ◽  
pp. 1027-1032 ◽  
Author(s):  
Jing Wu ◽  
Wenchao Wang ◽  
Joshua Dominic Rizak ◽  
Zhengbo Wang ◽  
Jianhong Wang ◽  
...  

Recent developments in neuron recording techniques include the invention of some fragile electrodes. The fragility of these electrodes impedes their successful use in deep brain recordings because it is difficult to penetrate the electrodes through the dura mater, especially the tentorium cerebelli (TC) enclosing the cerebellum and brain stem. This paper reports a new method to pierce the TC for inserting fragile electrodes into the inferior colliculus of rhesus monkeys. Briefly, a unique tool kit, consisting of needles with sharp tips, a guide tube and an “impactor,” was used in a multistep protocol to pierce the TC. The impactor provided a brief force that quickly thrusts the needles through the meninges without causing significant damage to the brain tissue under the TC. Using this novel approach, tetrodes were successfully implanted into the inferior colliculus of a rhesus monkey and neuronal discharge signals were recorded. This method, which is simple, convenient and economical, allows neurophysiologists to study the electrophysiological characteristics of deep brain structures under the TC with advanced, albeit fragile, electrodes.


2019 ◽  
Author(s):  
Yonatan Katz ◽  
Michael Sokoletsky ◽  
Ilan Lampl

AbstractDeep brain nuclei, such as the amygdala, nucleus basalis, and locus coeruleus, play a crucial role in cognition and behavior. Nonetheless, acutely recording electrical activity from these structures in head-fixed awake rodents has been very challenging due to the fact that head-fixed preparations are not designed for stereotactic accuracy. We overcome this issue by designing the DeepTarget, a system for stereotactic head-fixation and recording, which allows for accurately directing recording electrodes or other probes into any desired location in the brain. We then validated it by performing intracellular recordings from optogenetically-tagged amygdalar neurons followed by histological reconstruction, which revealed that it is accurate and precise to within ∼100 μm. Moreover, in another group of mice we were able to target both the mammillothalamic tract and subthalamic nucleus. This approach can be adapted to any type of extracellular electrode, fiber optic or other probe in cases where high accuracy is needed in awake, head-fixed rodents.Highlights> The Deep Target, new system for accurately targeting deep nuclei in head-fixed animals for electrophysiology and optogenetics.> Accurate and precise to within 100 μm following a one-time alignment.> Validation: Opto-tagged Vm recordings in the amygdala of awake mice.> Validation: Targeting multiple deep brain structures in the same mouse.


2021 ◽  
pp. 097275312199017
Author(s):  
Mahender Kumar Singh ◽  
Krishna Kumar Singh

Background: The noninvasive study of the structure and functions of the brain using neuroimaging techniques is increasingly being used for its clinical and research perspective. The morphological and volumetric changes in several regions and structures of brains are associated with the prognosis of neurological disorders such as Alzheimer’s disease, epilepsy, schizophrenia, etc. and the early identification of such changes can have huge clinical significance. The accurate segmentation of three-dimensional brain magnetic resonance images into tissue types (i.e., grey matter, white matter, cerebrospinal fluid) and brain structures, thus, has huge importance as they can act as early biomarkers. The manual segmentation though considered the “gold standard” is time-consuming, subjective, and not suitable for bigger neuroimaging studies. Several automatic segmentation tools and algorithms have been developed over the years; the machine learning models particularly those using deep convolutional neural network (CNN) architecture are increasingly being applied to improve the accuracy of automatic methods. Purpose: The purpose of the study is to understand the current and emerging state of automatic segmentation tools, their comparison, machine learning models, their reliability, and shortcomings with an intent to focus on the development of improved methods and algorithms. Methods: The study focuses on the review of publicly available neuroimaging tools, their comparison, and emerging machine learning models particularly those based on CNN architecture developed and published during the last five years. Conclusion: Several software tools developed by various research groups and made publicly available for automatic segmentation of the brain show variability in their results in several comparison studies and have not attained the level of reliability required for clinical studies. The machine learning models particularly three dimensional fully convolutional network models can provide a robust and efficient alternative with relation to publicly available tools but perform poorly on unseen datasets. The challenges related to training, computation cost, reproducibility, and validation across distinct scanning modalities for machine learning models need to be addressed.


2021 ◽  
Author(s):  
Kadharbatcha S Saleem ◽  
Alexandru V Avram ◽  
Daniel Glen ◽  
Cecil Chern-Chyi Yen ◽  
Frank Q Ye ◽  
...  

Subcortical nuclei and other deep brain structures are known to play an important role in the regulation of the central and peripheral nervous systems. It can be difficult to identify and delineate many of these nuclei and their finer subdivisions in conventional MRI due to their small size, buried location, and often subtle contrast compared to neighboring tissue. To address this problem, we applied a multi-modal approach in ex vivo non-human primate (NHP) brain that includes high-resolution mean apparent propagator (MAP)-MRI and five different histological stains imaged with high-resolution microscopy in the brain of the same subject. By registering these high-dimensional MRI data to high-resolution histology data, we can map the location, boundaries, subdivisions, and micro-architectural features of subcortical gray matter regions in the macaque monkey brain. At high spatial resolution, diffusion MRI in general, and MAP-MRI in particular, can distinguish a large number of deep brain structures, including the larger and smaller white matter fiber tracts as well as architectonic features within various nuclei. Correlation with histology from the same brain enables a thorough validation of the structures identified with MAP-MRI. Moreover, anatomical details that are evident in images of MAP-MRI parameters are not visible in conventional T1-weighted images. We also derived subcortical template SC21 from segmented MRI slices in three-dimensions and registered this volume to a previously published anatomical template with cortical parcellation (Reveley et al., 2017; Saleem and Logothetis, 2012), thereby integrating the 3D segmentation of both cortical and subcortical regions into the same volume. This newly updated three-dimensional D99 digital brain atlas (V2.0) is intended for use as a reference standard for macaque neuroanatomical, functional, and connectional imaging studies, involving both cortical and subcortical targets. The SC21 and D99 digital templates are available as volumes and surfaces in standard NIFTI and GIFTI formats.


Author(s):  
Frederik Enders ◽  
Andreas Rothfuss ◽  
Stefanie Brehmer ◽  
Jan Stallkamp ◽  
Dirk Michael Schulte ◽  
...  

Abstract Background The preoperative preparation of the planning dataset for frame-based stereotactic brain biopsy is often associated with logistical effort and burden on the patient. Intraoperative imaging modalities need to be investigated to overcome these limitations. Objective The objective of the study was to develop and apply a new method for the intraoperative acquisition of the planning dataset with the multiaxial robotic C-arm system Artis zeego. Methods An indication-customized dose-reduced protocol for Artis zeego was developed and implemented into the workflow. A sample of 14 patients who had undergone intraoperative imaging with Artis zeego was analyzed. A sample of 10 patients with conventional preoperative imaging by cranial computed tomography (CT) was used as a control group. Outcomes were compared with regard to target deviation, diagnostic value of the biopsies, complications, and procedure time. Results In all patients, a suitable intraoperative planning dataset could be acquired with Artis zeego. Total procedure time was shorter for the Artis zeego group (p = 0.01), whereas time in the operating room area was longer in the Artis zeego group (p = 0.04). Biopsy results were diagnostic in 12 patients (86%) in the Artis zeego group and in 8 patients (80%) in the control group. There were no significant differences in target size, trajectory length, or target deviation. Conclusion Intraoperative imaging for frame-based stereotactic brain biopsy with Artis zeego is an easy and feasible method. Accuracy is comparable to conventional CT, whereas radiation exposure could be additionally reduced. It allows a significant reduction of the total procedure length and improves the comfort for the patient and staff.


Author(s):  
Frédéric Chapelle ◽  
Lucie Manciet ◽  
Bruno Pereira ◽  
Anna Sontheimer ◽  
Jérôme Coste ◽  
...  

IntroductionAlthough deep brain stimulation is nowadays performed worldwide, the biomechanical aspects of electrode implantation received little attention, mainly as physicians focused on the medical aspects, such as the optimal indication of the surgical procedure, the positive and adverse effects, and the long-term follow-up. We aimed to describe electrode deformations and brain shift immediately after implantation, as it may highlight our comprehension of intracranial and intracerebral mechanics.Materials and MethodsSixty electrodes of 30 patients suffering from severe symptoms of Parkinson’s disease and essential tremor were studied. They consisted of 30 non-directional electrodes and 30 directional electrodes, implanted 42 times in the subthalamus and 18 times in the ventrolateral thalamus. We computed the x (transversal), y (anteroposterior), z (depth), torsion, and curvature deformations, along the electrodes from the entrance point in the braincase. The electrodes were modelized from the immediate postoperative CT scan using automatic voxel thresholding segmentation, manual subtraction of artifacts, and automatic skeletonization. The deformation parameters were computed from the curve of electrodes using a third-order polynomial regression. We studied these deformations according to the type of electrodes, the clinical parameters, the surgical-related accuracy, the brain shift, the hemisphere and three tissue layers, the gyration layer, the white matter stem layer, and the deep brain layer (type I error set at 5%).ResultsWe found that the implanted first hemisphere coupled to the brain shift and the stiffness of the type of electrode impacted on the electrode deformations. The deformations were also different according to the tissue layers, to the electrode type, and to the first-hemisphere-brain-shift effect.ConclusionOur findings provide information on the intracranial and brain biomechanics and should help further developments on intracerebral electrode design and surgical issues.


2018 ◽  
Author(s):  
Hong Ni ◽  
Chaozhen Tan ◽  
Zhao Feng ◽  
Shangbin Chen ◽  
Zoutao Zhang ◽  
...  

AbstractMapping the brain structures in three-dimensional accurately is critical for an in-depth understanding of the brain functions. By using the brain atlas as a hub, mapping detected datasets into a standard brain space enables efficiently use of various datasets. However, because of the heterogeneous and non-uniform characteristics of the brain structures at cellular level brought with the recently developed high-resolution whole-brain microscopes, traditional registration methods are difficult to apply to the robust mapping of various large volume datasets. Here, we proposed a robust Brain Spatial Mapping Interface (BrainsMapi) to address the registration of large volume datasets at cellular level by introducing the extract regional features of the anatomically invariant method and a strategy of parameter acquisition and large volume transformation. By performing validation on model data and biological images, BrainsMapi can not only achieve robust registration on sample tearing and streak image datasets, different individual and modality datasets accurately, but also are able to complete the registration of large volume dataset at cellular level which dataset size reaches 20 TB. Besides, it can also complete the registration of historical vectorized dataset. BrainsMapi would facilitate the comparison, reuse and integration of a variety of brain datasets.


Sign in / Sign up

Export Citation Format

Share Document