Twin-wire roll forming of mechanical base paper from three furnishes – effects on formation and mechanical properties

2006 ◽  
Vol 21 (3) ◽  
pp. 349-358 ◽  
Author(s):  
Bengt Nordström
TAPPI Journal ◽  
2013 ◽  
Vol 12 (4) ◽  
pp. 19-27
Author(s):  
PATRICK HUBER ◽  
LAURENT LYANNAZ ◽  
BRUNO CARRÉ

The fraction of deinked pulp for coated paper production is continually increasing, with some mills using 100% deinked pulp for the base paper. The brightness of the coated paper made from deinked pulp may be reached through a combination of more or less extensive deinking, compensated by appropriate coating, to optimize costs overall. The authors proposed general optimization methods combined with Kubelka-Munk multilayer calculations to find the most economical combination of deinking and coating process that would produce a coated paper made from DIP, at a given target brightness, while maintaining mechanical properties.


2019 ◽  
pp. 305-310
Author(s):  
Ivan Nikolaevich Koverninskij

The article provides material on the study of chemical-thermomechanical pulp (CTMM) from poplar wood, produced by the Chinese company WeifangderuibioloDgical TECHNOLODGY CO., LTD. As a result of the research, it was established that CTMP of poplar wood has the ability to be easily milled with a significant increase (by 30–80%) of physical and mechanical properties. The interval of the possible degree of grinding, in which the mass can be used with the greatest efficiency, is recommended 30–50 °SR. CTMM in unbleached form is a high-quality primary semi-finished fibrous material that can be effectively used in combination with waste fiber for the production of corrugated paper and cardboard for flat layers of corrugated cardboard (test liner). Adding weight to the composition is appropriate in the range of 20–50%. CTMM in bleached form is a high-quality primary fiber for the production of base paper for various sanitary purposes. Compositions with bleached cellulose, in which cellulose should be added within 15–20%, will differ in high efficiency in imparting properties to paper. When using coniferous sapwood (pine, larch), a characteristic large-tonnage waste of Russian enterprises, an increase in the mechanical properties of the mass is expected by 20–30%. Such a mass will be a significant factor in the development of the production of containerboard, sanitary and hygienic, as well as other types of paper and cardboard. The CTMM technology offered by the Chinese company WeifangderuibioloDgical TECHNOLODGY CO., LTD is recommended for use by Russian timber merchants. In terms of its importance, the technology is capable of solving the tasks of developing the production of pulp, paper and cardboard, provided for in the Strategy for the Development of the Forest Complex of Russia until 2030.


2013 ◽  
Vol 470 ◽  
pp. 447-451
Author(s):  
Xiao Li Jin ◽  
Qian Qian Liang ◽  
Bao Ji Ma

Metal Rubber made by the specific process has excellent mechanical properties. Spiral coil winding is one of the keys in the process of forming Metal Rubber. This paper introduces the forming principle of the metal rubber spiral coil and the control of resilience amount in the forming process. A Spiral roll forming machine is designed for Metal rubber and it can be controlled automatically.


2018 ◽  
Vol 218 ◽  
pp. 04011 ◽  
Author(s):  
Agus Pramono ◽  
Alry Mochtar Jamil ◽  
Anistasia Milandia

Composites a material was developed to replace metal and alloys, because of the properties such as light weight and unique mechanical properties. Processing of aluminum-based composites has been developing by new manufacturing technology, namely severe plastic deformation (SPD), to produce unique of mechanical properties. Some of the methods used are; equal channel angular pressing (ECAP), accumulative roll bonding (ARB) and multi-axial forging (MAF). The results of some of these methods were compared with the latest method of new SPD, namely: repetitive press roll forming (RPRF). Based on grain morphology and mechanical properties, the result of RPRF has superior to another method. The properties produced by SPD technology was varies, the highest of hardness produced by RPRF process was 88 HV10, ECAP produced 65 HV10, MAF was 46 HV10 and ARB reached 50 HV10. While the highest of tensile strength produced by MAF was 237 MPa while the RPRF process just only around 147 MPa, but the ultrafine grains just only produced by RPRF method which is 0.9 μm, compared to other methods: MAF 1.2 μm, ECAP 5.7 μm and ARB is not so far with MAF that is equal to 1.4 μm. The RPRF process can be recommended for the interest of the aluminum-based composite materials processing industry. Because currently some component product by industries have been substituted from metal alloy materials to metal-based composites.


2011 ◽  
Vol 473 ◽  
pp. 490-497 ◽  
Author(s):  
N. Grittner ◽  
M. Engelhardt ◽  
M. Hepke ◽  
Dirk Bormann ◽  
Bernd Arno Behrens ◽  
...  

Due to its low density and good mechanical properties Magnesium holds a high potential for design applications. The investigations discussed herein focus on the use of extruded magnesium sheets as semi-finished products e.g. for subsequent processing by roll forming. Special interest is given by the hcp-structure of magnesium which reduces forming abilities. Extrusion experiments using AZ31 were carried out to investigate the influence of different die geometries (S = sharp-edged and R= radius), billet temperatures (TB= 350°C and 390°C) and extrusion speeds (vext= 2.31 m/min and 9.24 m/min) on mechanical properties, grain structure and texture of said alloy. Two types of sheets with the dimensions of 80 x 1 mm and 80 x 2 mm respectively were produced using the institutes 10 MN extrusion press make SMS MEER. Sheet material with a thickness of 1 mm rolled from cast billets has been used for reference. Microstructural analysis focused on recrystallization behavior and grain size as well as grain distribution within the sheets. Tensile tests in extrusion or rolling direction as well as 45° and 90° to the same showed a strong influence of the specimen orientation on the mechanical properties. Additional Erichsen cupping tests demonstrated the stretch-forming capacity of the different test set-ups.


2008 ◽  
Vol 584-586 ◽  
pp. 68-73 ◽  
Author(s):  
Clemens Müller ◽  
Tilman Bohn ◽  
Enrico Bruder ◽  
Peter Groche

Linear flow splitting is a new continuous cold forming process where the edge of a sheet metal is formed into two flanges by splitting and supporting rolls. Thus the production of bifurcated profiles from sheet metal without lamination of material becomes feasible. The production of such structures takes place incrementally in a modified roll forming machine. Experimental investigateons on a HSLA steel show, that even at a surface increase of the sheet edge of about 1800% no cracks were nucleated in the profiles. EBSD measurements in the splitting centre reveal that similar to other SPD processes UFG microstructures develop in the processing zone. Thus a steady state is reached in the processing zone where increasing strain has no more (or little) influence on the materials properties i.e. its deformability, as it is typical for SPD-processes. The formation of UFG microstructures is considered to be a mandatory condition for the linear flow splitting process, as it improves the formability of the material to the extremely high level required for this process. The mechanical properties of profiles produced by linear flow splitting are characterised by large gradients, depending on the local deformation and the resulting microstructure. Very high hardness is measured at the former processing zone, i.e. the splitting centre and the flange surface, where severe plastic deformation takes place and UFG microstructures are present. In direction to lower deformation i.e. with increasing distance to the splitting ground or flange surface the hardness decreases close to the level of the undeformed material. In the present paper the linear flow splitting process is introduced and the microstructural development in the process zone is discussed on the base of EBSD measurements on profiles of the steel ZStE 500. The repartition of mechanical properties in a bifurcated profile is demonstrated by detailed hardness measurements.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Fengkui Cui ◽  
Yongxiang Su ◽  
Shaoke Xu ◽  
Fei Liu ◽  
Guolin Yao

The aim of this work is to control the physical and mechanical properties of a spline surface and achieve a reasonable choice of high-speed cold roll-beating processing parameters. The surface residual stress and surface work hardening at the indexing circle serve as the main evaluation indices of the physical and mechanical properties of the spline surface. The influence degree of the processing parameters on each evaluation index is analyzed using Taguchi theory. An optimized model for improving the Taguchi process capability index that combines Taguchi theory with entropy theory is established, and the integral process capacity index is optimized via the generalized price reduction gradient method. The results of the optimization and the verification test are implemented in a high-speed cold roll forming test for comparison. The results show that the influence of processing parameters on the physical and mechanical properties of the splash surface of the cold roll can be ordered as follows: feed rate > roll round radius > cold roll-beating speed. In addition, the spline surface physical and mechanical properties of the optimal processing parameters were obtained for the combination of a cold rolling speed of 1581 r/mm, feed rate of 42 mm/min, and roll round radius of 2 mm.


2016 ◽  
Vol 838-839 ◽  
pp. 615-620 ◽  
Author(s):  
Farid Utyashev ◽  
Radik Mulyukov ◽  
Rafael Sukhorukov ◽  
Vener Valitov

The results of development of new resource-saving technologies of local shape-forming under superplastic deformation conditions (SP) by means of roll-forming and rotary swaging are presented. These technologies are efficient for fabrication of discs, shells, rings up to 800 mm in diameter, as well as hollow shafts made of heat-resistant nickel-, titanium-and iron-based alloys that are used in aircraft engines and ground power installations. In particular, to implement innovative technologies a universal SRZhD-800 roll-forming mill has been developed for discs roll-forming made of heat-resistant alloys under SP. An efficiency of using of semi-finished products with prepared ultrafine grained (UFG) structure for generating precise complex geometry profile parts both homogeneous and regulated structure that changing in the radial direction of the disc and for obtaining high mechanical properties that are optimized taking operational conditions into account is proved. The technological process of rotary swaging under SP conditions has been developed for fabrication parts made of high alloy heat-resistant alloys using demountable mandrels. This method allows to obtain precise complex geometry profile parts such as disc with a thin cone flange which is characterized by homogeneous structure and high mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document