scholarly journals ANALISA PERBANDINGAN SUHU PERMUKAAN DINDING RUMAH VERNAKULAR PANTAI DAN GUNUNG

2018 ◽  
Vol 2 (3) ◽  
pp. 149
Author(s):  
Hermawan Hermawan ◽  
Eddy Prianto ◽  
Erni Setyowati

Abstract: Research on thermal performance will have implications for building energy savings. The method of discussing thermal performance is varied. In this study will look at the performance of the building envelope in creating thermal comfort of buildings. The study used a field study by comparing the temperature of wall surfaces in vernacular houses in coastal and mountain areas. Measurements were carried out for 5 days in three different periods, namely the dry season to rain, the rainy season and the rainy season to the dry season. The results showed differences in wall surface temperature between vernacular houses on mountains and beaches. This is in accordance with the conditions of climate variables at different locations in height. The location of the beach has a higher tendency than the location of the mountain.Keyword: wall surface temperature, vernacular house, thermal performance  Abstrak: Penelitian tentang kinerja termal akan berimplikasi pada penghematan energi bangunan. Metode pembahasan kinerja termal banyak ragamnya. Pada penelitian ini akan melihat kinerja selubung bangunan dalam menciptakan kenyamanan termal bangunan. Penelitian menggunakan studi lapangan dengan membandingkan suhu permukaan dinding pada rumah vernakular di daerah pantai dan gunung. Pengukuran dilakukan selama 5 hari pada tiga periode yang berbeda yaitu musim peralihan kemarau ke hujan, musim hujan dan musim peralihan hujan ke kemarau.  Hasil penelitian menunjukkan perbedaan suhu permukaan dinding antara rumah vernakular di gunung dan pantai. Hal ini sesuai dengan kondisi variabel iklim pada lokasi yang berbeda ketinggiannya. Lokasi pantai mempunyai kecenderungan lebih tinggi dibanding lokasi gunung.Kata Kunci: suhu permukaan dinding, rumah vernakular, kinerja termal

2020 ◽  
Vol 316 ◽  
pp. 03003
Author(s):  
Feng Gao ◽  
Qian Zhang ◽  
Hongyu Xiao ◽  
Fengli Chen ◽  
Xuefeng Xia

The finite volume discrete solution of the Navier-Stokes equation and the RNG model of the turbulence model are used to numerically simulate the flow and heat transfer characteristics of supercritical kerosene in a circular tube. The results show that as the inlet mass flow increases, the wall surface temperature and the central flow oil temperature gradually decrease, and the pressure loss becomes larger. As the inlet temperature increases, the wall surface temperature and the central flow oil temperature both increase. When the heat flux density is constant, as the pressure increases, the deterioration of heat transfer will be weakened, and increasing the pressure can improve the effect of convection heat transfer.


Author(s):  
Kiran K. Muramalla ◽  
Yitung Chen ◽  
Anthony E. Hechanova

This paper deals with the development of a two-dimensional numerical model to predict the wall-catalyzed homogeneous decomposition of sulfur trioxide in a tubular component geometry for the production of hydrogen by the sulfur-iodine thermochemical water splitting cycle, a candidate cycle in the U.S. Department of Energy Nuclear Hydrogen Initiative. The reacting fluid is a mixture of sulfur trioxide gas and water vapor inside the tubes of a heat exchanger. The heat exchanger is made of Incoloy alloy 800H with ALFA-4 coated on the inner walls which acts as a catalyst. Decomposition of sulfur trioxide depends on many different parameters such as wall surface temperature, mole flow rate of the reacting mixture, diameter of the reactor tube, length of the reactor tube, operating pressure and inlet temperature of the reacting mixture. The effects of wall surface temperature, diameter of the reactor tube and mole flow rate on the decomposition of sulfur trioxide were investigated using a two-dimensional numerical model using Computational Fluid Dynamics (CFD) techniques. The preprocessor GAMBIT was used to create a computational mesh and the CFD software package FLUENT 6.2.16 [1] which is based on finite volume methods was used to simulate the problem. Both FLUENT 6.2.16 and Tecplot 10.0 are used to post process the problem.


2019 ◽  
Vol 11 (3) ◽  
pp. 912 ◽  
Author(s):  
Goopyo Hong ◽  
Suk-Won Lee ◽  
Ji-Yeon Kang ◽  
Hyung-Geun Kim

An external wall panel (EWP) as a novel alternative to provide spatial flexibility and improve the performance of external walls was developed. The purpose of this study was to analyze the thermal performance of this EWP. A simulation analysis was carried out to scrutinize whether it was vulnerable to condensation, considering South Korea’s weather conditions, and find countermeasures to prevent this. Results indicated that the indoor surface temperature with the measures of added insulation materials and an inserted thermal-breaker was over 16.5 °C and that these methods could prevent condensation. In addition, this study assessed unsteady-state thermal characteristics, linear thermal transmittance, and the effective thermal transmittance of EWP. Effective thermal transmittance was estimated in consideration of the heat transmittance of EWP and the linear thermal transmittance of its slabs and its connection parts. The thermal characteristics of the building envelope are needed to analyze effective thermal transmittance and linear thermal transmittance-associated thermal bridges.


Author(s):  
El Hassan Ridouane ◽  
Marcus V. A. Bianchi

Uninsulated wall assemblies are typical in older homes, as many were built before building codes required insulation. Building engineers need to understand the thermal performance of these assemblies as they consider home energy upgrades if they are to properly predict pre-upgrade performance and, consequently, prospective energy savings from the upgrade. Most whole-building energy simulation tools currently use simplified, 1D characterizations of building envelopes and assume a fixed thermal resistance that does not vary over a building’s temperature range. This study describes a detailed 3D computational fluid dynamics model that evaluates the thermal performance of uninsulated wall assemblies. It accounts for conduction through framing, convection, and radiation and allows for material property variations with temperature. Parameters that were varied include ambient outdoor temperature and cavity surface emissivity. The results may serve as input for building energy simulation tools that model the temperature-dependent energy performance of homes with uninsulated walls.


Author(s):  
Yassine Kharbouch ◽  
Mohamed Ameur

Abstract Climate change has become a real challenge in different fields, including the building sector. Understanding and assessing the impact of climate change on building energy performance is still necessary to elaborate new climate-adaptive design measures for future buildings. The building energy consumption for heating and cooling is mainly related to the building envelope thermal performance. In this study, the winter heat loss and summer heat gain indicators are proposed to assess and analyse the potential impact of climate change on opaque building envelope elements for different climate zones in Morocco over the next 40 years. For that purpose, a one-dimensional heat transfer model is used to simulate the heat transfer through the multi-layer structure of the wall/roof. A medium climate change scenario is considered in this study. The results showed that the current average walls and roof summer heat gain is expected to increase of about 19.2–54.3% by the 2060s depending on the climate zone, versus a less important decrease in winter heat loss varies between –10.6 and –20.6%. This paper provides a reliable evaluation of the climate change impact on building envelope thermal performance, which leads to better adjustments in future building envelope designs.


Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2912 ◽  
Author(s):  
Jiayu Li ◽  
Bohong Zheng ◽  
Wenquan Shen ◽  
Yanfen Xiang ◽  
Xiao Chen ◽  
...  

To mitigate the urban heat island (UHI) and release the low carbon potential of green walls, we analyzed the cooling and energy-saving performance of different green wall designs. Envi-met was applied as the main simulation tool, and a pedestrian street named Yuhou Street was selected as the study object. Four designs of walls were summarized and simulated, demonstrating the living wall system (LWS). Super soil had superiority in cooling and energy saving. Outdoor air temperature, indoor air temperature, outside wall surface temperature, and inside wall surface temperature were analyzed. Apart from the outdoor air temperature, the other three temperatures were all significantly affected by the design of green walls. Finally, energy savings in building cavities were determined. The indoor energy saving ratio of the LWS based on super soil reached 19.92%, followed by the LWS based on boxes at 15.37%, and green facades wall at 6.29%. The indoor cooling powers on this typical day showed that the cooling power of the LWS based on super soil was 8267.32 W, followed by the LWS based on boxes at 6381.57 W, and green facades wall at 2610.08 W. The results revealed the difference in cooling and energy-saving performance of different green walls in this typical hot summer area.


2018 ◽  
Vol 140 (2) ◽  
Author(s):  
Ayoub Gounni ◽  
Mohamed El Wazna ◽  
Mustapha El Alami ◽  
Abdeslam El Bouari ◽  
Omar Cherkaoui ◽  
...  

The potential applicability of a developed recycled textile material, based on acrylic spinning waste, as thermal insulation is conducted. The prepared acrylic spinning waste (AS) is thermo-physically characterized in terms of density, air permeability, and thermal conductivity. The results show that the density and air permeability are 10.583 kg/m3 and 1100 L/m2/s, respectively. In addition, the thermal conductivity is found to be 38.27 mW/(m K). The developed thermal insulator is then tested in a thermally controlled reduced scale cavity. Two walls of the cavity are outfitted with AS at two different locations and compared to the walls without AS. The comparison is made based on the wall surface temperature and heat flux. A reduction in surface temperature is observed in the walls outfitted with AS, compared to wall without AS. Indeed, compared to a control wall, the peak heat fluxes are reduced by 27.23% and 18.67%, respectively, related to the walls with AS at location 1 and location 2. The obtained results show that the AS is a competitive thermal insulation material and can increase the thermal performance of the building walls.


Sign in / Sign up

Export Citation Format

Share Document