scholarly journals Effect of changes in global temperature and radiative forcing on general atmospheric circulation

Author(s):  
M. B. Bogdanov ◽  
S. V. Morozova

Possible connections are studied between the monthly average values of the wind angular moment module and anomalу of the globally averaged surface temperature and change in radiative forcing. The existence of statistically significant positive linear correlation between these characteristics is shown. The results obtained are in accordance with the conclusions of the theory of similarity of planetary atmospheres.

2009 ◽  
Vol 22 (2) ◽  
pp. 396-413 ◽  
Author(s):  
Clara Deser ◽  
Adam S. Phillips

Abstract The relative roles of direct atmospheric radiative forcing (due to observed changes in well-mixed greenhouse gases, tropospheric and stratospheric ozone, sulfate and volcanic aerosols, and solar output) and observed sea surface temperature (SST) forcing of global December–February atmospheric circulation trends during the second half of the twentieth century are investigated by means of experiments with an atmospheric general circulation model, Community Atmospheric Model, version 3 (CAM3). The model experiments are conducted by specifying the observed time-varying SSTs and atmospheric radiative quantities individually and in combination. This approach allows the authors to isolate the direct impact of each type of forcing agent as well as to evaluate their combined effect and the degree to which their impacts are additive. CAM3 realistically simulates the global patterns of sea level pressure and 500-hPa geopotential height trends when both forcings are specified. SST forcing and direct atmospheric radiative forcing drive distinctive circulation responses that contribute about equally to the global pattern of circulation trends. These distinctive circulation responses are approximately additive and partially offsetting. Atmospheric radiative changes directly drive the strengthening and poleward shift of the midlatitude westerly winds in the Southern Hemisphere (and to a lesser extent may contribute to those over the Atlantic–Eurasian sector in the Northern Hemisphere), whereas SST trends (specifically those in the tropics) are responsible for the intensification of the Aleutian low and weakening of the tropical Walker circulation. Discrepancies between the atmospheric circulation trends simulated by CAM3 and Community Climate System Model, version 3 (CCSM3), a coupled model driven by the same atmospheric radiative forcing as CAM3, are traced to differences in their tropical SST trends: in particular, a 60% weaker warming of the tropical Indo-Pacific in the CCSM3 ensemble mean than in nature.


Climate ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 85 ◽  
Author(s):  
Sergei Soldatenko

In this paper, we apply the optimal control theory to obtain the analytic solutions of the two-component globally averaged energy balance model in order to estimate the influence of solar radiation management (SRM) operations on the global mean surface temperature in the 21st century. It is assumed that SRM is executed via injection of sulfur aerosols into the stratosphere to limit the global temperature increase in the year 2100 by 1.5 °C and keeping global temperature over the specified period (2020–2100) within 2 °C as required by the Paris climate agreement. The radiative forcing produced by the rise in the atmospheric concentrations of greenhouse gases is defined by the Representative Concentration Pathways and the 1pctCO2 (1% per year CO2 increase) scenario. The goal of SRM is formulated in terms of extremal problem, which entails finding a control function (the albedo of aerosol layer) that minimizes the amount of aerosols injected into the upper atmosphere to satisfy the Paris climate target. For each climate change scenario, the optimal albedo of the aerosol layer and the corresponding global mean surface temperature changes were obtained. In addition, the aerosol emission rates required to create an aerosol cloud with optimal optical properties were calculated.


2020 ◽  
Vol 33 (3) ◽  
pp. 847-865 ◽  
Author(s):  
B. Yu ◽  
H. Lin ◽  
V. V. Kharin ◽  
X. L. Wang

AbstractThe interannual variability of wintertime North American surface temperature extremes and its generation and maintenance are analyzed in this study. The leading mode of the temperature extreme anomalies, revealed by empirical orthogonal function (EOF) analyses of December–February mean temperature extreme indices over North America, is characterized by an anomalous center of action over western-central Canada. In association with the leading mode of temperature extreme variability, the large-scale atmospheric circulation features an anomalous Pacific–North American (PNA)-like pattern from the preceding fall to winter, which has important implications for seasonal prediction of North American temperature extremes. A positive PNA pattern leads to more warm and fewer cold extremes over western-central Canada. The anomalous circulation over the PNA sector drives thermal advection that contributes to temperature anomalies over North America, as well as a Pacific decadal oscillation (PDO)-like sea surface temperature (SST) anomaly pattern in the midlatitude North Pacific. The PNA-like circulation anomaly tends to be supported by SST warming in the tropical central-eastern Pacific and a positive synoptic-scale eddy vorticity forcing feedback on the large-scale circulation over the PNA sector. The leading extreme mode–associated atmospheric circulation patterns obtained from the observational and reanalysis data, together with the anomalous SST and synoptic eddy activities, are reasonably well simulated in most CMIP5 models and in the multimodel mean. For most models considered, the simulated patterns of atmospheric circulation, SST, and synoptic eddy activities have lower spatial variances than the corresponding observational and reanalysis patterns over the PNA sector, especially over the North Pacific.


1989 ◽  
Vol 53 (370) ◽  
pp. 257-262 ◽  
Author(s):  
D. D. Hogarth ◽  
J. E. T. Horne

AbstractA thin (100 m) cover of flat-lying, Recent, calcite-rich tuff at Ndale near Fort Portal, Uganda, unconformably overlies steeply dipping Precambrian metamorphic rocks. It is locally radioactive owing to uranium-rich pyrochlore minerals and lesser amounts of zircon, monazite, titanite, and an unidentified thorium phosphate. In one concentrate, four grains of uranpyrochlore and one grain of uranoan pyrochlore showed a positive linear correlation of Ti with U, and negative linear correlations of Ti with Na, F and Sr. Ta remained high and relatively constant [11 anal., ave. 14.5 (0.6)% Ta2O5]. In the same concentrate the composition of a separate grain of uranoan pyrochlore did not plot on these lines and Ta was comparatively low [2 anal., ave. 4.5 (0.3)% Ta2O5]. The data suggest two separate paths of differentiation. However, zoned grains were not observed. Unit cells were cubic with a = 10.351 ± 0.002 Å for a grain with 12.9% UO2tot and 10.333 ± 0.002 Å for a grain with 26.6% UO2tot. On heating in air the cell size decreased, possibly due to oxidation of U4+. The crystalline nature of these minerals can be attributed to a very young (4000–5000 yr) geological age.


2015 ◽  
Vol 28 (9) ◽  
pp. 3834-3845 ◽  
Author(s):  
Thomas L. Delworth ◽  
Fanrong Zeng ◽  
Anthony Rosati ◽  
Gabriel A. Vecchi ◽  
Andrew T. Wittenberg

Abstract Portions of western North America have experienced prolonged drought over the last decade. This drought has occurred at the same time as the global warming hiatus—a decadal period with little increase in global mean surface temperature. Climate models and observational analyses are used to clarify the dual role of recent tropical Pacific changes in driving both the global warming hiatus and North American drought. When observed tropical Pacific wind stress anomalies are inserted into coupled models, the simulations produce persistent negative sea surface temperature anomalies in the eastern tropical Pacific, a hiatus in global warming, and drought over North America driven by SST-induced atmospheric circulation anomalies. In the simulations herein the tropical wind anomalies account for 92% of the simulated North American drought during the recent decade, with 8% from anthropogenic radiative forcing changes. This suggests that anthropogenic radiative forcing is not the dominant driver of the current drought, unless the wind changes themselves are driven by anthropogenic radiative forcing. The anomalous tropical winds could also originate from coupled interactions in the tropical Pacific or from forcing outside the tropical Pacific. The model experiments suggest that if the tropical winds were to return to climatological conditions, then the recent tendency toward North American drought would diminish. Alternatively, if the anomalous tropical winds were to persist, then the impact on North American drought would continue; however, the impact of the enhanced Pacific easterlies on global temperature diminishes after a decade or two due to a surface reemergence of warmer water that was initially subducted into the ocean interior.


2007 ◽  
Vol 20 (8) ◽  
pp. 1445-1467 ◽  
Author(s):  
Masaru Yoshioka ◽  
Natalie M. Mahowald ◽  
Andrew J. Conley ◽  
William D. Collins ◽  
David W. Fillmore ◽  
...  

Abstract The role of direct radiative forcing of desert dust aerosol in the change from wet to dry climate observed in the African Sahel region in the last half of the twentieth century is investigated using simulations with an atmospheric general circulation model. The model simulations are conducted either forced by the observed sea surface temperature (SST) or coupled with the interactive SST using the Slab Ocean Model (SOM). The simulation model uses dust that is less absorbing in the solar wavelengths and has larger particle sizes than other simulation studies. As a result, simulations show less shortwave absorption within the atmosphere and larger longwave radiative forcing by dust. Simulations using SOM show reduced precipitation over the intertropical convergence zone (ITCZ) including the Sahel region and increased precipitation south of the ITCZ when dust radiative forcing is included. In SST-forced simulations, on the other hand, significant precipitation changes are restricted to over North Africa. These changes are considered to be due to the cooling of global tropical oceans as well as the cooling of the troposphere over North Africa in response to dust radiative forcing. The model simulation of dust cannot capture the magnitude of the observed increase of desert dust when allowing dust to respond to changes in simulated climate, even including changes in vegetation, similar to previous studies. If the model is forced to capture observed changes in desert dust, the direct radiative forcing by the increase of North African dust can explain up to 30% of the observed precipitation reduction in the Sahel between wet and dry periods. A large part of this effect comes through atmospheric forcing of dust, and dust forcing on the Atlantic Ocean SST appears to have a smaller impact. The changes in the North and South Atlantic SSTs may account for up to 50% of the Sahel precipitation reduction. Vegetation loss in the Sahel region may explain about 10% of the observed drying, but this effect is statistically insignificant because of the small number of years in the simulation. Greenhouse gas warming seems to have an impact to increase Sahel precipitation that is opposite to the observed change. Although the estimated values of impacts are likely to be model dependent, analyses suggest the importance of direct radiative forcing of dust and feedbacks in modulating Sahel precipitation.


2011 ◽  
Vol 11 (12) ◽  
pp. 6049-6062 ◽  
Author(s):  
X. Yue ◽  
H. Liao ◽  
H. J. Wang ◽  
S. L. Li ◽  
J. P. Tang

Abstract. Mineral dust aerosol can be transported over the nearby oceans and influence the energy balance at the sea surface. The role of dust-induced sea surface temperature (SST) responses in simulations of the climatic effect of dust is examined by using a general circulation model with online simulation of mineral dust and a coupled mixed-layer ocean model. Both the longwave and shortwave radiative effects of mineral dust aerosol are considered in climate simulations. The SST responses are found to be very influential on simulated dust-induced climate change, especially when climate simulations consider the two-way dust-climate coupling to account for the feedbacks. With prescribed SSTs and dust concentrations, we obtain an increase of 0.02 K in the global and annual mean surface air temperature (SAT) in response to dust radiative effects. In contrast, when SSTs are allowed to respond to radiative forcing of dust in the presence of the dust cycle-climate interactions, we obtain a global and annual mean cooling of 0.09 K in SAT by dust. The extra cooling simulated with the SST responses can be attributed to the following two factors: (1) The negative net (shortwave plus longwave) radiative forcing of dust at the surface reduces SST, which decreases latent heat fluxes and upward transport of water vapor, resulting in less warming in the atmosphere; (2) The positive feedback between SST responses and dust cycle. The dust-induced reductions in SST lead to reductions in precipitation (or wet deposition of dust) and hence increase the global burden of small dust particles. These small particles have strong scattering effects, which enhance the dust cooling at the surface and further reduce SSTs.


2017 ◽  
Vol 13 (8) ◽  
pp. 1037-1048 ◽  
Author(s):  
Henrik Carlson ◽  
Rodrigo Caballero

Abstract. Recent work in modelling the warm climates of the early Eocene shows that it is possible to obtain a reasonable global match between model surface temperature and proxy reconstructions, but only by using extremely high atmospheric CO2 concentrations or more modest CO2 levels complemented by a reduction in global cloud albedo. Understanding the mix of radiative forcing that gave rise to Eocene warmth has important implications for constraining Earth's climate sensitivity, but progress in this direction is hampered by the lack of direct proxy constraints on cloud properties. Here, we explore the potential for distinguishing among different radiative forcing scenarios via their impact on regional climate changes. We do this by comparing climate model simulations of two end-member scenarios: one in which the climate is warmed entirely by CO2 (which we refer to as the greenhouse gas (GHG) scenario) and another in which it is warmed entirely by reduced cloud albedo (which we refer to as the low CO2–thin clouds or LCTC scenario) . The two simulations have an almost identical global-mean surface temperature and equator-to-pole temperature difference, but the LCTC scenario has  ∼  11 % greater global-mean precipitation than the GHG scenario. The LCTC scenario also has cooler midlatitude continents and warmer oceans than the GHG scenario and a tropical climate which is significantly more El Niño-like. Extremely high warm-season temperatures in the subtropics are mitigated in the LCTC scenario, while cool-season temperatures are lower at all latitudes. These changes appear large enough to motivate further, more detailed study using other climate models and a more realistic set of modelling assumptions.


Sign in / Sign up

Export Citation Format

Share Document