scholarly journals Scale effect in a fluid-conducting fault network

2019 ◽  
Vol 61 (4) ◽  
pp. 3-14
Author(s):  
V. A. Petrov ◽  
M. Lespinasse ◽  
V. V. Poluektov ◽  
S. A. Ustinov ◽  
V. A. Minaev

The data presented in the article consistently outlines the methodology for studying the orientation and morphogenetic characteristics of fracture systems of four scale levels including kilometers, meters, centimeters and millimeters. The Urtuisky granite massif, located in the South-Eastern Transbaikalia to the west of the Streltsovsky caldera, containing uranium deposits unique in their reserves was chosen as the object of the research. The massif is composed of Late Riphean granites and granite-gneisses, affected by dynamometamorphic and hydrothermal-metasomatic transformations in various degrees, and dissected by numerous faults with traces of fluid activity of various tectogenesis episodes. The interrelation between such geometrical parameters of fractures systems as specific density and specific length was established. It is shown that such geostructural data should be used for conceptual and numerical modeling of fluid filtration and radionuclides transport processes occurring in a three-dimensional fractured-pore space of crystalline rocks, as applied to the reconstruction and modeling of uranium ore formation and use of geological space for radioactive materials isolation.

2018 ◽  
Vol 12 (3) ◽  
pp. 1013-1026 ◽  
Author(s):  
Ross M. Lieblappen ◽  
Deip D. Kumar ◽  
Scott D. Pauls ◽  
Rachel W. Obbard

Abstract. The brine pore space in sea ice can form complex connected structures whose geometry is critical in the governance of important physical transport processes between the ocean, sea ice, and surface. Recent advances in three-dimensional imaging using X-ray micro-computed tomography have enabled the visualization and quantification of the brine network morphology and variability. Using imaging of first-year sea ice samples at in situ temperatures, we create a new mathematical network model to characterize the topology and connectivity of the brine channels. This model provides a statistical framework where we can characterize the pore networks via two parameters, depth and temperature, for use in dynamical sea ice models. Our approach advances the quantification of brine connectivity in sea ice, which can help investigations of bulk physical properties, such as fluid permeability, that are key in both global and regional sea ice models.


2002 ◽  
Vol 7 (2) ◽  
pp. 39 ◽  
Author(s):  
D. Or

Recent advances in soil pore space visualization and geometrical characterization coupled with improved models for liquid and gaseous behaviour provide the impetus for examination of physical influences on microbial habitats and activity. Desaturation of a porous medium is accompanied by marked changes in liquid-vapour interfacial configurations, which result in confinement and fragmentation of aquatic habitats, alteration of liquid and gaseous diffusion pathways, and introduction of mechanical stresses exerted by films and receding menisci. At the pore scale, we examine relationships between liquid element size (at a given potential) and typical organism or colony size, in an attempt to explain physical triggers for enhanced biological production of extracellular polysaccharides (EPS) coating. The role of EPS in habitat alteration is deduced from its structural, mechanical and transport characteristics. The interplay between increasing liquid-vapour interfacial area and decreasing liquid diffusion pathways with decreasing water content can be formulated as a function of pore space geometry. Such relationships are potentially important for optimal biological control of various bioremediation activities taking place at the soil profile scale. Interactions between microorganisms and solid surfaces are investigated in the context of adhesion and formation of biofilms. In such prevailing microbial communities, EPS forms complex three-dimensional structures that facilitate efficient transport processes and support a rich spatial arrangement of microorganisms with different affinities to oxygen and various nutrients. Effects of microbial activity on properties of solid surfaces including weathering and wettability, and structural stabilization of the solid matrix by biological products are examined. 


1982 ◽  
Vol 14 (3) ◽  
pp. 33-39
Author(s):  
C Y Kuo

An existing, three-dimensional, Eulerian-Lagrangian finite-difference model was modified and used to examine the far-field transport processes of dumped sewage sludge in the New York Bight. Both in situ and laboratory data were utilized in an attempt to approximate model inputs such as mean current speed, vertical and horizontal diffusion coefficients, particle size distributions, and specific gravities. Concentrations of the sludge near the sea surface predicted from the computer model were compared qualitatively with those remotely sensed.


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 72
Author(s):  
Suresh Kumar Thappeta ◽  
S. Murty Bhallamudi ◽  
Venu Chandra ◽  
Peter Fiener ◽  
Abul Basar M. Baki

Three-dimensional numerical simulations were performed for different flow rates and various geometrical parameters of step-pools in steep open channels to gain insight into the occurrence of energy loss and its dependence on the flow structure. For a given channel with step-pools, energy loss varied only marginally with increasing flow rate in the nappe and transition flow regimes, while it increased in the skimming regime. Energy loss is positively correlated with the size of the recirculation zone, velocity in the recirculation zone and the vorticity. For the same flow rate, energy loss increased by 31.6% when the horizontal face inclination increased from 2° to 10°, while it decreased by 58.6% when the vertical face inclination increased from 40° to 70°. In a channel with several step-pools, cumulative energy loss is linearly related to the number of step-pools, for nappe and transition flows. However, it is a nonlinear function for skimming flows.


2021 ◽  
pp. 152808372110013
Author(s):  
Vivek R Jayan ◽  
Lekhani Tripathi ◽  
Promoda Kumar Behera ◽  
Michal Petru ◽  
BK Behera

The internal geometry of composite material is one of the most important factors that influence its performance and service life. A new approach is proposed for the prediction of internal geometry and tensile behavior of the 3 D (three dimensional) woven fabrics by creating the unit cell using mathematical coding. In many technical applications, textile materials are subjected to rates of loading or straining that may be much greater in magnitude than the regular household applications of these materials. The main aim of this study is to provide a generalized method for all the structures. By mathematical coding, unit cells of 3 D woven orthogonal, warp interlock and angle interlock structures have been created. The study then focuses on developing code to analyze the geometrical parameters of the fabric like fabric thickness, areal density, and fiber volume fraction. Then, the tensile behavior of the coded 3 D structures is studied in Ansys platform and the results are compared with experimental values for authentication of geometrical parameters as well as for tensile behavior. The results show that the mathematical coding approach is a more efficient modeling technique with an acceptable error percentage.


2001 ◽  
Vol 33 ◽  
pp. 304-310 ◽  
Author(s):  
Karen Junge ◽  
Christopher Krembs ◽  
Jody Deming ◽  
Aaron Stierle ◽  
Hajo Eicken

AbstractMicrobial populations and activity within sea ice have been well described based on bulk measurements from melted sea-ice samples. However, melting destroys the micro-environments within the ice matrix and does not allow for examination of microbial populations at a spatial scale relevant to the organism. Here, we describe the development of a new method allowing for microscopic observations of bacteria localized within the three-dimensional network of brine inclusions in sea ice under in situ conditions. Conventional bacterial staining procedures, using the DNA-specific fluorescent stain DAPI, epifluorescence microscopy and image analysis, were adapted to examine bacteria and their associations with various surfaces within microtomed sections of sea ice at temperatures from −2° to −15°C. The utility and sensitivity of the method were demonstrated by analyzing artificial sea-ice preparations of decimal dilutions of a known bacterial culture. When applied to natural, particle-rich sea ice, the method allowed distinction between bacteria and particles at high magnification. At lower magnifications, observations of bacteria could be combined with those of other organisms and with morphology and particle content of the pore space. The method described here may ultimately aid in discerning constraints on microbial life at extremely low temperatures.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ömer Akbal ◽  
Hakan F. Öztop ◽  
Nidal H. Abu-Hamdeh

Purpose The purpose of this paper is to make a three-dimensional computational analysis of melting in corrugated pipe inserted system filled with phase change material (PCM). The system was heated from the inner pipe, and temperature of the outer pipe was lower than that of inner pipe. Different geometrical ratio cases and two different temperature differences were tested for their effect on melting time. Design/methodology/approach A computational analysis through a pipe with corrugated pipe filled with PCM is analyzed. Finite volume method was applied with the SIMPLE algorithm method to solve the governing equations. Findings The results indicate that the geometrical parameters can be used to control the melting time inside the heat exchanger which, in turn, affect the energy efficiency. The fastest melting time is seen in Case 4 at the same temperature difference which is the major observation of the current work. Originality/value Originality of this work is to perform a three-dimensional analysis of melting of PCM in a corrugated pipe inserted pipe.


2018 ◽  
Vol 32 (31) ◽  
pp. 1850344 ◽  
Author(s):  
N. Eti ◽  
Z. Çetin ◽  
H. S. Sözüer

A detailed numerical study of low-loss silicon on insulator (SOI) waveguide bend is presented using the fully three-dimensional (3D) finite-difference time-domain (FDTD) method. The geometrical parameters are optimized to minimize the bending loss over a range of frequencies. Transmission results for the conventional single bend and photonic crystal assisted SOI waveguide bend are compared. Calculations are performed for the transmission values of TE-like modes where the electric field is strongly transverse to the direction of propagation. The best obtained transmission is over 95% for TE-like modes.


Sign in / Sign up

Export Citation Format

Share Document