scholarly journals Quantitative estimates of the impact of the most important factors on global climate change over the past 150 years

Author(s):  
O. M. Pokrovsky

We proposed the implementation of the multiple regression to create a statistical model for description of the climate change under the influence of specified climate-impacting factors. This model provides not only estimates of the temporal evolution of global temperature, but also a set of corresponding confidence intervals with a given level of statistical significance (probability). The elimination of the linear trend of climatic temperature series (CRUTEM) and atmospheric CO2 concentration allows objectively and quantitatively assess the impact of natural climate change factors. The global CRUTEM temperature responds quasi-synchronously to fluctuations in the average surface temperature of the North Atlantic (AMO index), but with a delay of about 15 years – on changes in solar activity (Wolf numbers). The linear trend of increasing CO2 concentrations in the atmosphere explains almost all the interannual variability and reflects the linear trend of global temperature, but it covers a part of its interannual variability.

2018 ◽  
Vol 18 (8) ◽  
pp. 5691-5697 ◽  
Author(s):  
Richard S. Stolarski ◽  
Anne R. Douglass ◽  
Susan E. Strahan

Abstract. Column HCl measurements show deviations from the expected slow decline following the regulation of chlorine-containing compounds by the Montreal Protocol. We use the simultaneous measurements of N2O and HCl by the Microwave Limb Sounder (MLS) instrument on the Aura satellite to examine this problem. We find that the use of N2O measurements at a specific altitude to represent the impact of dynamical variability on HCl results in a derived linear trend in HCl that is negative (ranging from −2.5 to 5.3 % decade−1) at all altitudes between 68 and 10 hPa. These trends are at or near 2σ statistical significance at all pressure levels between 68 and 10 hPa. This shows that analysis of simultaneous measurements of several constituents is a useful approach to identify small trends from data records that are strongly influenced by dynamical interannual variability.


Agronomy ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1975
Author(s):  
Elisa Driesen ◽  
Wim Van den Ende ◽  
Maurice De Proft ◽  
Wouter Saeys

Stomata, the microscopic pores surrounded by a pair of guard cells on the surfaces of leaves and stems, play an essential role in regulating the gas exchange between a plant and the surrounding atmosphere. Stomatal development and opening are significantly influenced by environmental conditions, both in the short and long term. The rapid rate of current climate change has been affecting stomatal responses, as a new balance between photosynthesis and water-use efficiency has to be found. Understanding the mechanisms involved in stomatal regulation and adjustment provides us with new insights into the ability of stomata to process information and evolve over time. In this review, we summarize the recent advances in research on the underlying mechanisms of the interaction between environmental factors and stomatal development and opening. Specific emphasis is placed on the environmental factors including light, CO2 concentration, ambient temperature, and relative humidity, as these factors play a significant role in understanding the impact of global climate change on plant development.


2015 ◽  
Vol 11 (10) ◽  
pp. 1271-1295 ◽  
Author(s):  
A. Marzocchi ◽  
D. J. Lunt ◽  
R. Flecker ◽  
C. D. Bradshaw ◽  
A. Farnsworth ◽  
...  

Abstract. Orbital forcing is a key climate driver over multi-millennial timescales. In particular, monsoon systems are thought to be driven by orbital cyclicity, especially by precession. Here, we analyse the impact of orbital forcing on global climate with a particular focus on the North African monsoon, by carrying out an ensemble of 22 equally spaced (one every 1000 years) atmosphere–ocean–vegetation simulations using the HadCM3L model, covering one full late Miocene precession-driven insolation cycle with varying obliquity (between 6.568 and 6.589 Ma). The simulations only differ in their prescribed orbital parameters, which vary realistically for the selected time period. We have also carried out two modern-orbit control experiments, one with late Miocene and one with present-day palaeogeography, and two additional sensitivity experiments for the orbital extremes with varying CO2 forcing. Our results highlight the high sensitivity of the North African summer monsoon to orbital forcing, with strongly intensified precipitation during the precession minimum, leading to a northward penetration of vegetation up to ~ 21° N. The modelled summer monsoon is also moderately sensitive to palaeogeography changes, but it has a low sensitivity to atmospheric CO2 concentration between 280 and 400 ppm. Our simulations allow us to explore the climatic response to orbital forcing not only for the precession extremes but also on sub-precessional timescales. We demonstrate the importance of including orbital variability in model–data comparison studies, because doing so partially reduces the mismatch between the late Miocene terrestrial proxy record and model results. Failure to include orbital variability could also lead to significant miscorrelations in temperature-based proxy reconstructions for this time period, because of the asynchronicity between maximum (minimum) surface air temperatures and minimum (maximum) precession in several areas around the globe. This is of particular relevance for the North African regions, which have previously been identified as optimal areas to target for late Miocene palaeodata acquisition.


2007 ◽  
Vol 20 (7) ◽  
pp. 1174-1187 ◽  
Author(s):  
Jing Jiang ◽  
William Perrie

Abstract This study explores how midlatitude extratropical cyclone intensities, frequencies, and tracks can be modified under warming-induced conditions due to enhanced greenhouse gas (GHG) concentrations. Simulations were performed with the Canadian mesoscale compressible community (MC2) model driven by control and high CO2 climate estimates from the Canadian Climate Centre model, the Second Generation Coupled Global Climate Model (CGCM2). CGCM2 simulations have effective CO2 concentration forcing, following the Intergovernmental Panel on Climate Change (IPCC) IS92a scenario conditions, which define a near doubling of CO2 concentrations by 2050 compared to the 1980s. The control and high CO2 conditions were obtained from years 1975–94 and 2040–59 of CGCM2 simulations. For the northwest Atlantic, the CO2-induced warming for this period (2040–59) varies from ∼1°–2°C in the subtropics, near the main development region for Atlantic hurricanes, to ∼1°C in the north. In simulations of northwest Atlantic storms, the net impact of this enhanced CO2 scenario is to cause storms to increase in radius, with marginal tendencies to become more severe and to propagate faster (although not statistically significant), and for the mean storm tracks to shift slightly poleward.


2005 ◽  
Vol 272 (1581) ◽  
pp. 2561-2569 ◽  
Author(s):  
Marcel E Visser ◽  
Christiaan Both

Climate change has led to shifts in phenology in many species distributed widely across taxonomic groups. It is, however, unclear how we should interpret these shifts without some sort of a yardstick: a measure that will reflect how much a species should be shifting to match the change in its environment caused by climate change. Here, we assume that the shift in the phenology of a species' food abundance is, by a first approximation, an appropriate yardstick. We review the few examples that are available, ranging from birds to marine plankton. In almost all of these examples, the phenology of the focal species shifts either too little (five out of 11) or too much (three out of 11) compared to the yardstick. Thus, many species are becoming mistimed due to climate change. We urge researchers with long-term datasets on phenology to link their data with those that may serve as a yardstick, because documentation of the incidence of climate change-induced mistiming is crucial in assessing the impact of global climate change on the natural world.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Upama Gurung

The impact of climate change upon the basic human rights of the people is emerging as a frontline research area particularly in the North East region of India- the region which is more prone to the gushing impacts of global climate change due to its geo-ecological delicateness, shared international boundaries, rugged mountain terrains and the regions’ high dependency on climate sensitive livelihood such as agriculture, tea and forestry. Profound impacts of climate change in the region are being seen already in the form of rise in average temperature, slight changes in rainfall patterns, changes in the biodiversity, decrease of air quality which has ultimately threatened an array of human rights of the people in the region such as their Right to Life, Right to Food, Right to health and so on. Although Climate change has a cascading effect upon the people of the North East region of India, this area has been under-acknowledged and under-researched. Therefore, the paper purports to explore and evaluate the threats that anthropogenic climate change has imposed upon the human rights of the people of North-East India along albeit interrogating the measures that have been undertaken to address the issue and their efficacy.


2017 ◽  
Author(s):  
Mauri S. Pelto

Abstract. In 1983 the North Cascade Glacier Climate Project (NCGCP) began annual monitoring 10 glaciers throughout the range, to identify their response to climate change. The annual observations include mass balance, terminus behaviour, and accumulation area ratio (AAR). Annual mass balance (Ba) measurements have been continued on 7 original glaciers that still exist. Two glaciers have disappeared: the Lewis Glacier and Spider Glacier. Foss Glacier was discontinued in 2014 as it has separated into several sections. In 1990, Easton Glacier and Sholes Glacier were added to the annual balance program. This comparatively long record from glaciers in one region conducted by the same research program using the same methods offers some useful comparative data to place the impact of regional climate warmth of 2015 in perspective. The mean annual balance of the North Cascade glaciers is reported in water equivalent thicknesses to the World Glacier Monitoring Service (WGMS). From 1984–2015 the mean Ba is –0.54 ma-1, ranging from –0.44 to –0.67  ma-1 for individual glacier's. This is equivalent to the WGMS global average for this period of –0.56 ma-1. The cumulative loss of 17.2 m w.e. and ~ 19 m of ice thickness represents more than 30 % of the volume of the glaciers. In 2015 the mean Ba of nine North Cascade glaciers was –3.10 m w.e., the most negative in the 32 year record, with 2005 the previous maximum loss at –2.84 m. The mean AAR of 3 % was likewise a minimum, previous minimum was 16 % in 2005. The correlation coefficient of Ba is above 0.80 between all glaciers including the USGS benchmark glacier, South Cascade Glacier. This indicates that the response is regional and not controlled by local factors. The similar mass balance losses in alpine glacier regions globally suggest global climate change is the principal driving force.


2019 ◽  
Vol 41 (1) ◽  
pp. 36-45 ◽  
Author(s):  
Pham Thi Ly ◽  
Hoang Luu Thu Thuy

Based on the data of daily maximum temperature in 26 meteorological stations in the North Center Region, Vietnam over the period of 1980 to 2013, the authors conducted the research on the spatial distribution of the number of hot days. The initial result shows that in general, in the north of the study area, the large number of hot days occurred in the plain, and tended to decrease westward and eastward. In the south, this number tends to increase from the west to the east. Especially, the largest number occurred in two areas: The Ma and Ca River's valleys (Thanh Hoa and Nghe An provinces) and the coastal areas (Thua Thien Hue province), creating two heat centers in Tuong Duong district, Nghe An province and Nam Dong district, Thua Thien Hue province.ReferencesAdina-Eliza Croitoru, Adrian Piticar, Antoniu-Flavius Ciupertea, Cristina FlorinaRosca, 2016 Changes in heat wave indices in Romania over the period 1961-2015. Global and Plantary Change 146. Journal homepage: www. Elsevier.com/locate/gloplacha.Chu Thi Thu Huong et al., 2010. Variations and trends in hot event in Vietnam from 1961-2007, VNU Journal of Science and Technology, 26(3S).Climate Council, 2014a. Angry Summer 2013/2014. Accessed at http://www.climatecouncil.org.au/ angry-summer.Climate Council, 2014b. Angry Summer 2013/2014. Accessed at http://www.climatecouncil.org.au/ angry-summer.CSIRO and BoM, 2012. State of the Climate 2012.CSIRO and Bureau of Meteorology, Melbourne.Accessed at http://www.csiro.au/Outcomes/ Climate/Understanding/State-of-the-Climate-2012.aspx.D'Ippoliti D., Michelozzi P., Marino C., De'Donato F., Menne B., Katsouyanni K., Kirchmayer U., Analitis A., Medina-Ramon M., Paldy A., Atkinson R., Kovats S., Bisanti L., Schneider A., Lefranc A., Iñiguez C., Perucci C., 2010. The impact of heat waves on mortality in 9 European cities: results from the EuroHEAT project. Environ. Health 9, 37. http://dx.doi.org/10.1186/1476-069X-9-37.Gerald A. Meehl, 1992. Effect of tropical topography on global climate, Ann. Rev. Earth Planet. Sci., 20, 85-112.Hayhoe K., Cayan D., Field C.B., Frumhoff P.C., Maurer E.P., Miller N.L., Moser S.C., Schneider S.H., Cahill K.N., Cleland E.E., Dale L., Drapek R., Hanemann R.M., lkstein L.S., Lenihan J., Lunch C.K., Neilson R.P., Sheridan S.C., Verville J.H., 2004. Emissions pathways, climate change, and impacts on California. PNAS, 101(34), 12422-12427.Ho Thi Minh Ha, Phan Van Tan, 2009. Trends and variations of extreme temperature in Vietnam in the period from 1961 to 2007, VNU Journal of Science and Technology, 25(3S).IPCC, 2007: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri R.K and Reisinger A. (eds.)]. IPCC, Geneva, Switzerland, 104p.IPCC, 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups   I, II and III  to the Fifth Assessment Report of the Intergovernmental  Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer  (eds.)].  IPCC, Geneva, Switzerland, 151p.Liu G., Zhang L., He B., Jin X., Zhang Q., Razafindrabe B., You H., 2015. Temporal changes in extreme high temperature, heat waves and relevant disasters in Nanjing metropolitan region, China. Nat.  Hazards, 76,  1415–1430. http://dx.doi.org/10.1007/s11069-014-1556-y.Manton M.J et al., 2001. Trends in extreme daily temperature in Southeast Asia Rainfall ad and the South Pacific, J. Climatol. 21.Nairn J.R., Fawcett R.J.B., 2015. Int. J. Environ. Res. Public Health 12, 227–253. http://dx.doi.org/10.3390/ijerph120100227.Nguyen Duc Ngu, 2009. Climate Change Challenges to development, Journal of Economy and Environment, No. 1.Perkins S.E., Alexander  L.V., 2013.  On the measurement of heat waves.  J. Clim.  26, 4500–4517. http://dx.doi.org/10.1175/JCLI-D-12-00383.1.Peterson T.C., Heim Jr. R.R., Hirsch R., Kaiser D.P., Brooks H., Diffenbaugh N.S., Dole R.M., Giovannettone J.P., Guirguis K., Karl T.R., Katz  R.W., Kunkel K., Lettenmaier D., McCabe G.J., Paciorek C.J., Ryberg K.R., Schubert S., Silva  V.B.S., Stewart B.C., Vecchia A.V., Villarini G., Vose  R.S., Walsh J., Wehner M., Wolock D., Wolter K., Woodhouse C.A., Wuebbles D., 2013. Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: state of knowledge. Bull. Amer. Meteor. Soc., 94, 821–834.Pham Thi Ly, Hoang Luu Thu Thuy, 2015. Variation of heat waves in the North Central Region over the period of 1980-2013, Journal of natural resources and environment, 9, 81-89.Phan Van Tan et al., 2010. Study impact of global climate change on extreme weather phenomena and factors in Vietnam, prediction and adaptation strategies. Project final report, KC 08.29/06-10, Hanoi University of Science.Spinoni J., Lakatos M., Szentimrey T., Bihari Z., Szalai S., Vogt  J., Antofie T., 2015. Heat and cold waves trends in Carpathian Region from 1961 to 2010. Int.  J. Climatol, 35, 4197–4209. http://dx.doi.org/10.1002/joc.4279.Toreti A., Desiato F., 2008.Temperature trends over Italy from 1961 to 2004, Theor. Appl. Climatol 91.Tran Cong Minh, 2007. Principle of meteorology and climate, Book, Public House of Hanoi National University.Tran Quang Duc, Trinh Lan Phuong, 2013. Changes of Hot day and Fohn Activities at Ha Tinh- Central Vietnam, VNU Journal of Science, Science and Technology, 29(2S).Trewin B., Smalley R., 2013.Changes in extreme temperature in Australia, 1910 to 2011. In: 19th AMOS National Conference, Melbourne, 11-13.Unal  Y.S., Tan  E., Mentes S.S., 2013. Summer heat waves over western Turkey between 1965 and 2006.Theor. Appl. Climatol, 112, 339–350.  http://dx.doi.org/10.1007/s00704-012-0704-0.Will Steffen, 2015. Quantifying the impact of climate change on extreme heat in Australia. Published by the Climate Council of Australia Limited. ISBN: 978-0-9942453-1-1 (print) 978-0-9942453-0-4 (web).


2021 ◽  
Author(s):  
Alba de la Vara ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Claas Teichmann ◽  
Daniela Jacob

AbstractIn this work we use a regional atmosphere–ocean coupled model (RAOCM) and its stand-alone atmospheric component to gain insight into the impact of atmosphere–ocean coupling on the climate change signal over the Iberian Peninsula (IP). The IP climate is influenced by both the Atlantic Ocean and the Mediterranean sea. Complex interactions with the orography take place there and high-resolution models are required to realistically reproduce its current and future climate. We find that under the RCP8.5 scenario, the generalized 2-m air temperature (T2M) increase by the end of the twenty-first century (2070–2099) in the atmospheric-only simulation is tempered by the coupling. The impact of coupling is specially seen in summer, when the warming is stronger. Precipitation shows regionally-dependent changes in winter, whilst a drier climate is found in summer. The coupling generally reduces the magnitude of the changes. Differences in T2M and precipitation between the coupled and uncoupled simulations are caused by changes in the Atlantic large-scale circulation and in the Mediterranean Sea. Additionally, the differences in projected changes of T2M and precipitation with the RAOCM under the RCP8.5 and RCP4.5 scenarios are tackled. Results show that in winter and summer T2M increases less and precipitation changes are of a smaller magnitude with the RCP4.5. Whilst in summer changes present a similar regional distribution in both runs, in winter there are some differences in the NW of the IP due to differences in the North Atlantic circulation. The differences in the climate change signal from the RAOCM and the driving Global Coupled Model show that regionalization has an effect in terms of higher resolution over the land and ocean.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yong Zhang ◽  
Lu-yu Liu ◽  
Yi Liu ◽  
Man Zhang ◽  
Cheng-bang An

AbstractWithin the mountain altitudinal vegetation belts, the shift of forest tree lines and subalpine steppe belts to high altitudes constitutes an obvious response to global climate change. However, whether or not similar changes occur in steppe belts (low altitude) and nival belts in different areas within mountain systems remain undetermined. It is also unknown if these, responses to climate change are consistent. Here, using Landsat remote sensing images from 1989 to 2015, we obtained the spatial distribution of altitudinal vegetation belts in different periods of the Tianshan Mountains in Northwestern China. We suggest that the responses from different altitudinal vegetation belts to global climate change are different. The changes in the vegetation belts at low altitudes are spatially different. In high-altitude regions (higher than the forest belts), however, the trend of different altitudinal belts is consistent. Specifically, we focused on analyses of the impact of changes in temperature and precipitation on the nival belts, desert steppe belts, and montane steppe belts. The results demonstrated that the temperature in the study area exhibited an increasing trend, and is the main factor of altitudinal vegetation belts change in the Tianshan Mountains. In the context of a significant increase in temperature, the upper limit of the montane steppe in the eastern and central parts will shift to lower altitudes, which may limit the development of local animal husbandry. The montane steppe in the west, however, exhibits the opposite trend, which may augment the carrying capacity of pastures and promote the development of local animal husbandry. The lower limit of the nival belt will further increase in all studied areas, which may lead to an increase in surface runoff in the central and western regions.


Sign in / Sign up

Export Citation Format

Share Document