scholarly journals Performance Estimation of Solar Flat Plate Air Heating System Using Helical Tapes

Author(s):  
Jeson Wilson John ◽  
Ashwin Harikrishnan

Solar flat plate collectors (FPC) are used for heating spaces, water heating, and many other purposes. The present technology of solar flat collectors uses vertical fins. The solar flat plate collector having absorber with vertical fins is provided with a helical tape in the fluid flow path. The absorber plate in the solar flat plate collector has an area of 100 cm x 50 cm. The solar flat plate collector has nine ducts with an area of 27.5 cm x 9.5 cm each. The helical tapes attached have a start angle of 64 deg which pass along the whole length of the duct. The helical tapes have a crosssection area of 1.5 mm x 4 mm. The pitch of the helical tapes is 100 mm. These fins have been attached between the vertical fins of the thickness of 1mm and a height of 10.5 cm. Data such as inlet temperature, outlet temperature efficiency and convective heat transfer coefficient are calculated. The mass flow rate of air is 10.28 kg/s and the air is subjected to solar radiation between 628.98 W/m2 and 708.59 W/m2. The values are noted down, and the and the efficiency is noted to have a 10% rise. The effectiveness of the solar plate collector will increase using a helical fin. A comparative analysis will be done between the conventional flat plate collector and the setup with the helical tapes. The study will show that the helical tapes in flat plate collector will be the best alternative compared to conventional flat plate collector.

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5417
Author(s):  
Francisco Álvarez-Sánchez ◽  
Jassón Flores-Prieto ◽  
Octavio García-Valladares

A theoretical–experimental annual analysis of a hybrid industrial direct–indirect solar air heating system performance for drying was conducted considering temperatures, useful energy Qu, efficiency η, and solar fraction SF. The direct solar air heating system located in Morelos, México, has flat-plate solar air collectors, and the indirect system has flat-plate solar water collectors, a thermal storage tank, a cross-flow fin, and a tube heat exchanger. A validated TRNSYS program modeled the process; the validation was carried out by comparing each component outlet temperature and useful energy with the respective experimental field data. The analysis considered annual usage over seven days a week, nine hours a day (from 09:00 to 18:00 h), and three operation modes. For the direct, indirect, and hybrid operation modes, the Qu values were 31.60, 55.19, and 75.18 MWh/yr; the annual η values were 0.44, 0.41, and 0.42; and the annual SF values were 0.45, and 0.73 for the indirect and hybrid mode, respectively. The hybridization of the direct–indirect solar air heating system increased annual performance by up to 58% in Qu and 42% in SF. The parametric analysis showed that a characteristic working nomogram of the hybrid system could be achieved, correlating the useful energy, efficiency, solar fraction, and operation temperature at a specified mass flow rate, and working temperature.


Author(s):  
Zairul Azrul Zakaria ◽  
Zafri Azran Abdul Majid ◽  
Muhammad Amin Harun ◽  
Ahmad Faris Ismail ◽  
Sany Izan Ihsan ◽  
...  

Existing design of Heat-Pipe Evacuated Tube Collector (HP ETC) for solar water heating require storage tank and additional heat exchanger required for air heating application which leads to the extra spacing and costing requirement. HP ETC have better thermal performance to produce high outlet temperature than flat plate collector (FPC), especially during diffuse solar radiation. But HP ETC normally focusing on water heating system. Furthermore, HP ETC and FPC installation need to be positioned either to south or north facing to ensure the solar thermal collector absorbs more solar radiation. Meanwhile, HP ETC need to be tilt at the correct angle to maximize the performance of the system. These could lead to design limitation. The aim of this research is to develop the new design of Evacuated Glass-Thermal Absorber Tube Collector namely EGATC for drying application. It was developed from conventional HP ETC evacuated glass tube. In this study comparison result of EGATC and HP ETC performance were evaluated. The three days outdoor experiment proves that the performance of EGATC was better than HP ETC in air heating application which is provide higher outlet temperature. Based on the result, EGATC (Day 1: 50.9 oC, Day 2: 53.9 oC, Day 3: 49.2 oC) performed better with slightly higher temperature at outlet temperature compare with HP ETC (Day 1: 46.7 oC, Day 2: 50.3 oC, Day 3: 46.9 oC). It is concluded that EGATC have better performance in term of temperature different and outlet temperature as compared to HP ETC. EGATC (Day 1: 53.6%, Day 2: 50.6%, Day 3: 49.8%) also have greater efficiency in term of heat storage capability as compared to HP ETC (Day 1: 42.7%, Day 2: 41.6%, Day 3: 41.1%). Regarding energy buffer storage, EGATC have better energy storage compared to HP ETC at sudden weather change such as diffuse solar radiation during clouds. The outlet temperature of EGATC (42.3 oC) was remained slightly higher compared to HP ETC (39.9 oC) at the beginning. The outlet temperature gradually drops slower during discharging period until the end of the experiment for 15 minutes towards outlet temperature 41.1ºC and 37.2ºC for both EGATC and HP ETC with temperature difference 1.2ºC and 2.7ºC respectively.


2013 ◽  
Vol 24 (3) ◽  
pp. 8-13 ◽  
Author(s):  
Sunil Chamoli

In this study, exergetic performance analysis of flat plate solar collector has been carried out analytically. A comprehensive mathematical modelling of thermal performance is simulated using MATLAB simulink and optimal geometrical and thermodynamic parameters are predicted pertaining to optimum performance of the system. The optimization procedure was applied to a typical collector and the optimum design points were extracted. The optimum values of collector inlet temperature, mass flow rate, absorber plate area, and fluid outlet temperature for maximum exergy inflow from the system have been obtained.


2018 ◽  
Author(s):  
M. T. Nitsas ◽  
I. P. Koronaki ◽  
L. Prentza

The utilization of solar energy in thermal energy systems was and always be one of the most effective alternative to conventional energy resources. Energy efficiency is widely used as one of the most important parameters in order to evaluate and compare thermal systems including solar collectors. Nevertheless, the first law of thermodynamics is not solely capable of describing the quantitative and qualitative performance of such systems and thus exergy efficiency is used so as to introduce the systems’ quality. In this work, the performance of a flat plate solar collector using water based nanofluids of different nanoparticle types as a working fluid is analyzed theoretically under the climatic conditions in Greece based on the First and Second Law of Thermodynamics. A mathematical model is built and the model equations are solved iteratively in a MATLAB code. The energy and exergy efficiencies as well as the collector losses coefficient for various parameters such as the inlet temperature, the particles concentration and type are determined. Moreover, a dynamic model is built so as to determine the performance of a flat plate collector working with nanofluids and the useful energy that can be stored in a water tank. The exergy destruction and exergy leakage are determined for a typical day in summer during which high temperatures and solar intensity values are common for the Greek climate.


Author(s):  
Vijayakumar Rajendran ◽  
Harichandran Ramasubbu ◽  
Karthick Alagar ◽  
Vignesh Kumar Ramalingam

An experimental study has been carried out to enhance a solar air heater’s performance by integrating artificial roughness through baffles on the absorber plate. In this paper, the thermal and energy matrices analysis of a Solar Air Heater (SAH) roughened with V up perforated baffles have been investigated. The effect of various mass flow rates on the SAH was analyzed with and without baffles. Experimental outputs like outlet air temperature, useful energy (heat) gain and thermal efficiency were evaluated to confirm the performance improvement. The baffled absorber plate SAH was found to give the maximum thermal efficiency and useful energy gain of 89.3% and 1321.37 W at a mass flow rate of 0.0346 kg/s, 13% and 12% higher than SAH without baffle. This result showed that the V up-shaped ribs in flow arrangement provide better thermal performance than smooth plate SAH for the parameter investigated. Energy matrices analysis and carbon dioxide mitigation of the SAH system were also analyzed.


Solar flat plate collector (SFPC) is a heat exchanger that transforms radiant solar energy into thermal energy in the form of heated fluid. The performance of SFPC is very much dependent on operating/input and response/output parameter which mainly affects the efficiency of SFPC. This chapter presented the modeling and optimization of SFPC system parameters (solar radiation [I], wind velocity [V], ambient temperature [Ta], and Inlet Temperature [Ti]) for SFPC. Modified-fuzzy set theory with MOOSRA (M-FST-MOOSRA) was employed to optimize the SFPC system. Based on results, trail no. 14 (i.e., I = 825 W/m2, V = 1.4 m/s, Ta = 28.8oC, and Ti = 66.4oC) gave highest RPI among the other trail nos. and shows the optimal setting which results in higher efficiency and better performance for the SFPC. Further, parametric analysis is also done to determine the most important parameter followed by analysis of variance (ANOVA) analysis. Last, confirmatory test are conducted to verify and validate the proposed method with the experimental results.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Sahil Arora ◽  
Geleta Fekadu ◽  
Sudhakar Subudhi

The present study deals with the experimental performance of a Marquise shaped channel solar flat-plate collector using Al2O3/water nanofluid and base fluid (pure water). The experimental setup comprises a special type of solar flat plate collector, closed working fluid systems, and the measurement devices. The absorber plate is made of two aluminum plates sandwiched together with Marquise-shaped flow channels. The volume fraction of 0.1% of Al2O3/water nanofluid is used for this study. The various parameters used to investigate performance of the collector energy and exergy efficiency are collector inlet and outlet fluid temperatures, mass flow rate of the fluid, solar radiation, and ambient temperature. The flow rate of nanofluid and water varies from 1 to 5 lpm. The maximum energy efficiencies attained are 83.17% and 59.72%, whereas the maximum exergy efficiencies obtained are 18.73% and 12.29% for the 20 nm—Al2O3/water nanofluids and pure water, respectively, at the flow rate of 3 lpm. These higher efficiencies may be due to the use of nanofluids and the sophisticated design of the absorber plate with the Marquise shaped channel.


Author(s):  
V. R. Bhore ◽  
S. B. Thombre

The present study deals with comparison of experimentally determined performance characteristics of solar flat plate collectors fitted with novel designs of absorber plate involving non-circular risers with integral fins and operating under natural circulation mode. The main flow passages considered were square, triangular and semicircular in cross section. One standard solar flat plate collector with circular risers was also tested simultaneously for direct comparison. The test results indicate that the absorber fitted with the triangular sectioned risers yields the best performance in terms of the efficiency (63%), and the buoyancy induced flow per unit area (76 kg/hr-m2) from amongst the collectors investigated. It is followed by the absorbers fitted with the semicircular and square sectioned risers respectively. The standard solar flat plate collector is found to yield the lowest values i.e. 46 % and 40 kg/hr-m2 respectively.


Sign in / Sign up

Export Citation Format

Share Document