scholarly journals Synthesis, Characterization and Conductivity Properties of Polystyrene/Polyacrylonitrile/Polyindole Ternary Composites

Author(s):  
Soykan ◽  
O.C. Candogan

In this investigation, polystyrene/polyacrylonitrile/polyindole (PSt/PAN/PIN) ternary composites with various amounts of PSt, PAN and PIN were synthesized using FeCl3 as an oxidant agent by chemical polymerization technique. The formation of ternary composites was assisted by Fourier transform infrared spectroscopy. Morphological studies demonstrated all composite have a smooth surface. The results of thermal gravimetric analysis indicate that incorporation of PIN in composites advances the thermal stability. X-ray diffraction analysis show that the amorphous nature of PIN and its ternary composites. The conductivities of PIN and the PSt/PAN/PIN composites were investigated with a four-probe technique. The conductivity of PIN was found to be 5.0 × 10–3 S cm–1, also the conductivities of the PSt/PAN/PIN composites were determined to 3.5 × 10–4, 7.4 × 10–4, 1.3 × 10–3, 2.2 × 10–3 and 2.8 × 10–3 S cm–1 respectively, with 9, 27, 45, 63 and 81 wt % of PIN.

2022 ◽  
Vol 1048 ◽  
pp. 141-146
Author(s):  
Madihally Nagaraja ◽  
Geetha Thippeswamy ◽  
Sushma Prashanth ◽  
Jayadev Pattar ◽  
Mahesh Hampapatna Mahesh

Composite of polyaniline-MgCl has been synthesized using oxidative polymerization method. Synthesized samples were characterized for structural analysis using FTIR and XRD. Morphological studies were carried by SEM micrographs. Current-Voltage (I-V) properties are obtained through Kiethly source meter. FTIR spectrum of polyaniline-MgCl composite indicates all the characteristic peaks of polyaniline. X-ray diffraction patterns represented the amorphous nature of polyaniline-MgCl composite. SEM micrographs confirmed the presence of MgCl particles in polyaniline matrix. I-V characteristics have shown the ohmic type behavior of polyaniline and polyaniline-MgCl composite.


2011 ◽  
Vol 23 (7) ◽  
pp. 513-517 ◽  
Author(s):  
Mohsen Ghorbani ◽  
Mohammad Soleimani Lashkenari ◽  
Hossein Eisazadeh

This study investigated the preparation and properties of polyaniline/silver (PAn/Ag2O) nanocomposite in aqueous media by chemical polymerization of aniline in the presence of ammonium peroxydisulphate as an oxidant. The products were investigated in terms of morphology, chemical structure, thermal stability and thermal degradation using scanning electron microscopy, Fourier transform infrared, thermal gravimetric analysis and differential scanning calorimetry, respectively. The results indicated that the properties of products were dependent on the nanocomposite structure.


2012 ◽  
Vol 727-728 ◽  
pp. 899-903 ◽  
Author(s):  
Keila Machado Medeiros ◽  
Taciana Regina de Gouveia Silva ◽  
Luana Rodrigues Kojuch ◽  
Edcleide Maria Araújo ◽  
Hélio Lucena Lira

Bentonites are the most used fillers in the development of nanocomposites, due to their characteristics that provide nanosized particles, contributing to a large contact area between the clay and the polymer. In general, the additions of small amounts of organoclay improve the mechanical and thermal properties of nanocomposites. Bentonite clays and organoclays were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetry (TG). The results of XRF, XRD and FTIR confirmed the presence of quaternary ammonium salt in the organoclay structure. From TG, it was observed that the organoclay showed better thermal stability when compared with bentonite clay.


2013 ◽  
Vol 634-638 ◽  
pp. 2293-2296
Author(s):  
Ai Li Ma ◽  
Cheng Qian Li ◽  
Wu Qing Du ◽  
Jie Chang

In this paper, carbon spheres were synthesized by CVD method. These carbon spheres exhibit diameters of about 200 nm. Thermal gravimetric analysis indicated the good stability in high temperature of the carbon spheres. The products were treated by microwave plasma and high temperature vacuum heat treatments respectively. The products were characterized by X-ray diffraction, Raman spectroscopy and Field Emission Scanning Electron Microscope. The study indicated that the original products, with perfect morphology and low graphitization degree, were converted to crystal. The different techniques were considered for the influence on the graphitization degree.


2010 ◽  
Vol 123-125 ◽  
pp. 247-250
Author(s):  
Yu Qing Zhang ◽  
Yu Xin He ◽  
Li Zhang ◽  
Jun Xian Li

A new type of EVA-g-PU/OMMT nanocomposites was synthesized through the method of chemical modification and melt intercalation. FTIR testing showed that the PU prepolymer was grafted on EVA main chains successfully. The structures of EVA-g-PU/OMMT nanocomposites were characterized by X-ray diffraction (XRD) and by high-resolution transmission electron microscopy (HRTEM). The enhanced storage modulus of EVA-g-PU/OMMT nanocomposites was characterized by dynamic mechanical analysis (DMA). The thermal stabilities of EVA/clay nanocomposites were also studied by thermal gravimetric analysis (TGA). Mechanical testing showed that the tensile strength and tear strength of EVA-g-PU/OMMT nanocomposites were far superior to pure EVA.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3320
Author(s):  
Imtiaz Ali ◽  
Maqsood Ahmad ◽  
Tarek Ganat

Drilling mud’s rheological characteristics, such as plastic viscosity and yield point, are adversely affected with an inappropriate mud formulation. Native starch is one of the most important components in water-based mud because it improves the rheological and filtration characteristics of the mud. The native starch stability under various temperature and exposure time regimes is an important concern for utilizing starch in oil and gas drilling operations. In this work, tapioca starch was modified using carboxymethylation for the first time in order to improve its performance in non-damaging water-based muds. The modified starch was characterized by Fourier-transform infrared spectroscopy and X-ray diffraction. The thermal stability was tested using thermal gravimetric analysis. Various mud blends were formulated based on the experimental design using response surface methodology (RSM) to investigate their performance at various temperature conditions. Thirty experimental runs were carried out based on the selected factors and responses considering the optimal (custom) design, and the results were analyzed through ANOVA. The Fourier-transform infrared spectroscopy and X-ray diffraction results confirmed the carboxymethylation of starch. The TGA analysis revealed strong thermal stability after modification. Additionally, the Power law model (PLM) described the obtained rheological data for the selected formulations, resulting in determination coefficients of more than 0.95. Furthermore, the examined samples showed a reduction in the flow behavior index from 0.30 to 0.21 and an increase in the consistency index from 5.6 to 15.1. Optimization and confirmation results revealed the adequacy of the generated empirical models for both plastic viscosity and yield point. The obtained consistency index values provided a direct relationship with the modified starch concentration, indicating an improvement in the cutting carrying capacity of mud. Based on the current literature survey, the studied formulation has not been reported in the literature.


2021 ◽  
Author(s):  
Roni Maryana ◽  
Muryanto Muryanto ◽  
Eka Triwahyuni ◽  
Oktaviani Oktaviani ◽  
Hafiizh Prasetia ◽  
...  

Abstract This study was carried out to investigate the extraction of cellulose acetate (CA) from cajuput (Melaleuca leucadendron) twigs and sugarcane (Saccharum officinarum) bagasse using an environmentally friendly method. At first, cellulose was extracted from cajuput twigs (CT) and sugarcane bagasse (SB) through prehydrolysis followed by soda (NaOH) pulping and elementary chlorine-free (ECF) bleaching. Later, the extracted cellulose was acetylated using iodine (I) as a catalyst. The obtained CA was characterized by Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), thermal gravimetric analysis (TGA), scanning electron microscope (SEM) and X-ray diffraction. FTIR and NMR analysis proved the replacement of free OH (hydroxyl) groups by acetyl groups. The degree of substitution (DS) showed the acetylation capability of cellulose extracted from CT and SB as well. The cellulose diameter and its crystallinity index were measured by SEM and X-ray diffraction, respectively. Furthermore, the thermal gravimetric analysis showed that CA extracted from CT and SB was thermal resistance. Therefore, CT and SB could be potential alternative resources for CA production using the mentioned method.


2019 ◽  
Vol 44 (1-2) ◽  
pp. 80-87
Author(s):  
Roonak Golabiazar ◽  
Zagros A Omar ◽  
Rekar N Ahmad ◽  
Shano A Hasan ◽  
S Mohammad Sajadi

Magnetite iron oxide nanoparticles synthesized using the co-precipitation methods were further functionalized with activated carbon. The magnetite-activated carbon nanoparticles were characterized by scanning electron microscopy equipped with energy dispersive X-ray spectroscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and UV-Vis spectroscopy. X-ray diffraction and Fourier transform infrared confirmed the functionalization of the Fe3O4 nanoparticles with the activated carbon. The X-ray diffraction studies demonstrate that magnetite-activated carbon nanoparticles were indexed into the spinel cubic lattice with a lattice parameter of 0.833 nm and an average particle size of about 14 nm. Various parameters such as dislocation density, microstrain, and surface morphological studies were calculated. However, this work implicated the use of magnetite-activated carbon nanoparticles in antibacterial studies. Further, the antibacterial effect of magnetite-activated carbon nanoparticles was evaluated against three pathogenic bacteria, which showed that the nanoparticles have moderate antibacterial activity against both Gram-positive ( Staphylococcus aureus) and Gram-negative ( Proteus mirabilis and Pseudomonas aureginosa) pathogenic bacterial strains in the presence of different magnetite-activated carbon nanoparticle concentrations at room temperature.


2019 ◽  
Author(s):  
Austin Evans ◽  
Matthew Ryder ◽  
Nathan C. Flanders ◽  
Edon Vitaku ◽  
Lin Chen ◽  
...  

Two-dimensional Covalent organic frameworks (2D COFs) are periodic, permanently porous, and lightweight solids that are polymerized from topologically designed monomers. The predictable design and structural modularity of these materials make them promising candidates for applications including catalysis, environmental remediation, chemical separations, and organic electronics, many of which will require stability to mechanical and thermal stress. Based on their reinforced structures and high degradation temperatures as determined by thermal gravimetric analysis (TGA), many reports have claimed that COFs have excellent thermal stability. However, their stability to heat and pressure has not been probed using methods that report on structural changes rather than the loss of volatile compounds. Here we explore two structurally analogous 2D COFs with different polymerization chemistries using in operando X-ray diffraction, which demonstrates the loss of crystallinity at lower temperatures than the degradation temperatures measured by TGA. Density functional theory calculations suggest that an asymmetric buckling of the COF lattice is responsible for the observed loss of crystallinity. In addition to their thermal stability, x-ray diffraction of the 2D COFs under gas pressures up to 100 bar showed no loss in crystallinity or structural changes, indicating that these materials are robust to mechanical stress by applied pressure. We expect that these results will encourage further exploration of COF stability as a function of framework design and isolated form, which will guide the design of frameworks that withstand demanding application-relevant conditions.


2013 ◽  
Vol 8 (2) ◽  
pp. 95-101
Author(s):  
Alexey Zaikovsky ◽  
Aleksandr Fedoseev ◽  
Salavat Sakhapov ◽  
Anton Evtushenko ◽  
Marina Serebriakova ◽  
...  

Experimental investigations of the possibility of arc discharge method for synthesis of nanoparticles of oxides and carbides of tungsten and aluminum have been presented. The method is based on anode atomization of composed graphite – aluminum and graphite – WO3 electrodes. The transmitted electron microscopy, thermal gravimetric analysis and X-ray diffraction were applied for the characterization of morphology and properties of synthesized materials. It was experimentally shown the arc discharge method allows to syntheses the nanoparticles of oxides and carbides of tungsten and aluminum


Sign in / Sign up

Export Citation Format

Share Document