scholarly journals ELECTROMYOGRAPHIC ACTIVITY OF VARIOUS MUSCLES DURING SIT-TO-STAND IN PATIENTS WITH STROKE: A META-ANALYSIS

2018 ◽  
Vol 4 (3) ◽  
pp. 14-20 ◽  
Author(s):  
Dimple, Antiya ◽  
Suvarna Ganvir

Aims:-To provide a comprehensive information about analysis of activation of various muscles during Sit-to-Stand in patients with stroke. To determine if there exists any common pattern of muscle activation. To give direction to future studies regarding the muscles to be investigated during Sit-to-Stand. Methods-  A  literature  search  was  performed  with  help  of  the  most commonly used database i.e. PubMed to select the studies related to electromyographic activities of various lower extremity, trunk and upper extremity muscles during Sit-to-Stand activity, published till 2016. The Inclusion criteria for the study were Prospective or retrospective cohort studies, studies that included only participants with stroke leading to hemiparesis and/or along with healthy participants as control group and studies that measured the EMG activity in either trunk muscles and/or limb muscles during sit to stand. The exclusion criteria were if their population of interest also included patients with other neurological conditions and studies in any language other than English. Two independent investigators assessed the studies based on inclusion and exclusion criteria.  Keywords used during the search were Electromyography, Stroke, Sit-to-Stand. The studies were thoroughly evaluated with respect to the Sit-to-Stand procedure and variety of muscles that were investigated through EMG analysis. Results: With the help of given keywords, abstracts/articles of 21 studies were retrieved from the database. After initial screening of the abstracts 12 studies were selected for in depth analysis. Various lower extremity muscles including Tibialis Anterior, Soleus, Quadriceps, Vastusmedialis, Gluteus Maximus were investigated in the studies. In 2 studies, Trunk muscles were investigated whereas in one study Triceps muscle activity was analyzed during Sit-to Stand activity in patients with stroke. Conclusion: From this study it can be concluded that the activity of Tibialis Anterior muscle was investigated more frequently by various researchers followed by the activity of Soleus and Quadriceps muscle.

Author(s):  
María del Mar Moreno-Muñoz ◽  
Fidel Hita-Contreras ◽  
María Dolores Estudillo-Martínez ◽  
Agustín Aibar-Almazán ◽  
Yolanda Castellote-Caballero ◽  
...  

Background: Abdominal Hypopressive Training (AHT) provides postural improvement, and enhances deep trunk muscle activation. However, until recently, there was a lack of scientific literature supporting these statements. The major purpose of this study was to investigate the effect of AHT on posture control and deep trunk muscle function. Methods: 125 female participants aged 18–60 were randomly allocated to the Experimental Group (EG), consisting of two sessions of 30 min per week for 8 weeks of AHT, or the Control Group (CG), who did not receive any treatment. Postural control was measured with a stabilometric platform to assess the static balance and the activation of deep trunk muscles (specifically the Transverse Abdominal muscle (TrA)), which was measured by real-time ultrasound imaging. Results: The groups were homogeneous at baseline. Statistical differences were identified between both groups after intervention in the Surface of the Center of Pressure (CoP) Open-Eyes (S-OE) (p = 0.001, Cohen’s d = 0.60) and the Velocity of CoP under both conditions; Open-Eyes (V-OE) (p = 0.001, Cohen´s d = 0.63) and Close-Eyes (V-CE) (p = 0.016, Cohen´s d = 0.016), with the EG achieving substantial improvements. Likewise, there were statistically significant differences between measurements over time for the EG on S-OE (p < 0.001, Cohen´s d = 0.99); V-OE (p = 0.038, Cohen´s d = 0.27); V-CE (p = 0.006, Cohen´s d = 0.39), anteroposterior movements of CoP with Open-Eyes (RMSY-OE) (p = 0.038, Cohen´s d = 0.60) and activity of TrA under contraction conditions (p < 0.001, Cohen´s d = 0.53). Conclusions: The application of eight weeks of AHT leads to positive outcomes in posture control, as well as an improvement in the deep trunk muscle contraction in the female population.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2452
Author(s):  
Ana Cecilia Villa-Parra ◽  
Jessica Lima ◽  
Denis Delisle-Rodriguez ◽  
Laura Vargas-Valencia ◽  
Anselmo Frizera-Neto ◽  
...  

The goal of this study is the assessment of an assistive control approach applied to an active knee orthosis plus a walker for gait rehabilitation. The study evaluates post-stroke patients and healthy subjects (control group) in terms of kinematics, kinetics, and muscle activity. Muscle and gait information of interest were acquired from their lower limbs and trunk, and a comparison was conducted between patients and control group. Signals from plantar pressure, gait phase, and knee angle and torque were acquired during gait, which allowed us to verify that the stance control strategy proposed here was efficient at improving the patients’ gaits (comparing their results to the control group), without the necessity of imposing a fixed knee trajectory. An innovative evaluation of trunk muscles related to the maintenance of dynamic postural equilibrium during gait assisted by our active knee orthosis plus walker was also conducted through inertial sensors. An increase in gait cycle (stance phase) was also observed when comparing the results of this study to our previous work. Regarding the kinematics, the maximum knee torque was lower for patients when compared to the control group, which implies that our orthosis did not demand from the patients a knee torque greater than that for healthy subjects. Through surface electromyography (sEMG) analysis, a significant reduction in trunk muscle activation and fatigability, before and during the use of our orthosis by patients, was also observed. This suggest that our orthosis, together with the assistive control approach proposed here, is promising and could be considered to complement post-stroke patient gait rehabilitation.


2010 ◽  
Vol 90 (2) ◽  
pp. 209-223 ◽  
Author(s):  
Sara J. Mulroy ◽  
Tara Klassen ◽  
JoAnne K. Gronley ◽  
Valerie J. Eberly ◽  
David A. Brown ◽  
...  

Background Task-specific training programs after stroke improve walking function, but it is not clear which biomechanical parameters of gait are most associated with improved walking speed. Objective The purpose of this study was to identify gait parameters associated with improved walking speed after a locomotor training program that included body-weight–supported treadmill training (BWSTT). Design A prospective, between-subjects design was used. Methods Fifteen people, ranging from approximately 9 months to 5 years after stroke, completed 1 of 3 different 6-week training regimens. These regimens consisted of 12 sessions of BWSTT alternated with 12 sessions of: lower-extremity resistive cycling; lower-extremity progressive, resistive strengthening; or a sham condition of arm ergometry. Gait analysis was conducted before and after the 6-week intervention program. Kinematics, kinetics, and electromyographic (EMG) activity were recorded from the hemiparetic lower extremity while participants walked at a self-selected pace. Changes in gait parameters were compared in participants who showed an increase in self-selected walking speed of greater than 0.08 m/s (high-response group) and in those with less improvement (low-response group). Results Compared with participants in the low-response group, those in the high-response group displayed greater increases in terminal stance hip extension angle and hip flexion power (product of net joint moment and angular velocity) after the intervention. The intensity of soleus muscle EMG activity during walking also was significantly higher in participants in the high-response group after the intervention. Limitations Only sagittal-plane parameters were assessed, and the sample size was small. Conclusions Task-specific locomotor training alternated with strength training resulted in kinematic, kinetic, and muscle activation adaptations that were strongly associated with improved walking speed. Changes in both hip and ankle biomechanics during late stance were associated with greater increases in gait speed.


2008 ◽  
Vol 88 (6) ◽  
pp. 703-711 ◽  
Author(s):  
Lars L Andersen ◽  
Michael Kjær ◽  
Christoffer H Andersen ◽  
Peter B Hansen ◽  
Mette K Zebis ◽  
...  

Background and PurposeMuscle-specific strength training has previously been shown to be effective in the rehabilitation of chronic neck muscle pain in women. The aim of this study was to determine the level of activation of the neck and shoulder muscles using surface electromyography (EMG) during selected strengthening exercises in women undergoing rehabilitation for chronic neck muscle pain (defined as a clinical diagnosis of trapezius myalgia).SubjectsThe subjects were 12 female workers (age=30–60 years) with a clinical diagnosis of trapezius myalgia and a mean baseline pain intensity of 5.6 (range=3–8) on a scale of 0 to 9.MethodElectromyographic activity in the trapezius and deltoid muscles was measured during the exercises (lateral raises, upright rows, shrugs, one-arm rows, and reverse flys) and normalized to EMG activity recorded during a maximal voluntary static contraction (MVC).ResultsFor most exercises, the level of muscle activation was relatively high (&gt;60% of MVC), highlighting the effectiveness and specificity of the respective exercises. For the trapezius muscle, the highest level of muscle activation was found during the shrug (102±11% of MVC), lateral raise (97±6% of MVC), and upright row (85±5% of MVC) exercises, but the latter 2 exercises required smaller training loads (3–10 kg) compared with the shrug exercise (20–30 kg).Discussion and ConclusionThe lateral raise and upright row may be suitable alternatives to shrugs during rehabilitation of chronic neck muscle pain. Several of the strength exercises had high activation of neck and shoulder muscles in women with chronic neck pain. These exercises can be used equally in the attempt to achieve a beneficial treatment effect on chronic neck muscle pain.


2014 ◽  
Vol 30 (1) ◽  
pp. 37-49 ◽  
Author(s):  
Chia-Wei Lin ◽  
Fong-Chin Su ◽  
Cheng-Feng Lin

Ballet deep squat with legs rotated externally (grand plié) is a fundamental movement for dancers. However, performing this task is a challenge to ankle control, particularly for those with ankle injury. Thus, the purpose of this study was to investigate how ankle sprains affect the ability of postural and muscular control during grand plié in ballet dancers. Thirteen injured dancers and 20 uninjured dancers performed a 15 second grand plié consisting of lowering, squatting, and rising phases. The lower extremity motion patterns and muscle activities, pelvic orientation, and center of pressure (COP) excursion were measured. In addition, a principal component analysis was applied to analyze waveforms of muscle activity in bilateral medial gastrocnemius, peroneus longus, and tibialis anterior. Our findings showed that the injured dancers had smaller pelvic motions and COP excursions, greater maximum angles of knee flexion and ankle dorsiflexion as well as different temporal activation patterns of the medial gastrocnemius and tibialis anterior. These findings suggested that the injured dancers coped with postural challenges by changing lower extremity motions and temporal muscle activation patterns.


2018 ◽  
Vol 10 (4) ◽  
pp. 355-360 ◽  
Author(s):  
David A. Krause ◽  
Lucas G. Dueffert ◽  
Jaclyn L. Postma ◽  
Eric T. Vogler ◽  
Amy J. Walsh ◽  
...  

Background: External rotation (ER) strengthening of the shoulder is an integral component of rehabilitative and preventative programs for overhead athletes. A variety of shoulder ER strengthening exercises are reported, including those intended to integrate the core musculature. The purpose of this study was to examine ER torque and electromyographic (EMG) activation of shoulder and trunk muscles while performing resisted isometric shoulder ER in 3 positions (standing, side lying, and side plank). Hypothesis: Significantly greater force and shoulder muscle activation would be generated while side lying given the inherent stability of the position, and greater trunk muscle activation would be generated in the less stable plank position. Study Design: Quasi-experimental repeated-measures study. Level of Evidence: Level 5. Methods: A convenience sample of 25 healthy overhead recreational athletes (9 men, 16 women) participated in this study. EMG electrodes were placed on the infraspinatus, posterior deltoid, middle trapezius, multifidi, internal obliques, and external obliques. EMG signals were normalized to a maximal isometric contraction. Participants performed resisted isometric ER in standing, side-lying, and side plank positions. Results were analyzed using a repeated-measures analysis of variance with post hoc Bonferroni corrections (α = 0.05). Results: There was no significant difference in ER torque between positions (α = 0.05). A significant difference in EMG activity of shoulder and trunk musculature between positions was found in 7 of the 8 muscles monitored. Significantly greater EMG activity in the infraspinatus, middle trapezius, and the nondominant external and internal obliques was found in the side plank position as compared with standing and side lying. Conclusion: While there was no difference in ER torque between the 3 exercise positions, EMG activity of the shoulder and trunk muscles was dependent on body position. Clinical Relevance: If a clinician is seeking to integrate trunk muscle activation while performing shoulder ER strengthening, the side plank position is preferred as compared with standing or side lying.


2015 ◽  
Vol 9 (2) ◽  
Author(s):  
Johann Peter Kuhtz-Buschbeck ◽  
Antonia Frendel

<p>Background: Arm swing is deliberately emphasized during power walking, a popular aerobic fitness exercise. Electromyographic (EMG) activation curves of arm and shoulder muscles during power walking have not yet been examined. Aim: To describe the amount and pattern of EMG activity of upper limb muscles during power walking. Data are compared to normal walking and jogging. Method:  Twenty volunteers were examined on a treadmill at 6 km/h during (a) normal walking, (b) power walking, (c) jogging. EMG data were collected for the trapezius (TRAP), anterior (AD) and posterior deltoid (PD), biceps (BIC), triceps (TRI), latissimus dorsi (LD) and erector spinae (ES) muscles. Results:  Activity of four muscles (AD, BIC, PD, TRAP) was three- to fivefold stronger during power walking than normal walking. Smaller significant increases involved the TRI, LD and ES. Two muscles (AD, TRAP) were more active during power walking than running. Normal walking and power walking involved similar EMG patterns of PD, LD, ES, while EMG patterns of running and walking differed. Interpretation: Emphasizing arm swing during power walking triples the EMG activity of upper limb muscles, compared to normal walking. Similar basic temporal muscle activation patterns in both modes of walking indicate a common underlying motor program. </p>


2015 ◽  
Vol 9 (2) ◽  
Author(s):  
Johann Peter Kuhtz-Buschbeck ◽  
Antonia Frendel

Background: Arm swing is deliberately emphasized during power walking, a popular aerobic fitness exercise. Electromyographic (EMG) activation curves of arm and shoulder muscles during power walking have not yet been examined. Aim: To describe the amount and pattern of EMG activity of upper limb muscles during power walking. Data are compared to normal walking and jogging. Method: Twenty volunteers were examined on a treadmill at 6 km/h during (a) normal walking, (b) power walking, (c) jogging. EMG data were collected for the trapezius (TRAP), anterior (AD) and posterior deltoid (PD), biceps (BIC), triceps (TRI), latissimus dorsi (LD) and erector spinae (ES) muscles. Results: Activity of four muscles (AD, BIC, PD, TRAP) was three- to fivefold stronger during power walking than normal walking. Smaller significant increases involved the TRI, LD and ES. Two muscles (AD, TRAP) were more active during power walking than running. Normal walking and power walking involved similar EMG patterns of PD, LD, ES, while EMG patterns of running and walking differed. Interpretation: Emphasizing arm swing during power walking triples the EMG activity of upper limb muscles, compared to normal walking. Similar basic temporal muscle activation patterns in both modes of walking indicate a common underlying motor program.


2019 ◽  
Vol 26 (6) ◽  
pp. 1-11
Author(s):  
Akkradate Siriphorn ◽  
Siriporn Vongsaiyat Siriphorn ◽  
Kittaphon Sawatthuk ◽  
Kanjana Temvorasub ◽  
Malinee Auttawut

Background/AimsBalance training using unstable support surfaces is widely used in clinics and research and can reduce the risk of falls in older people. This study aimed to investigate the effect of an exercise programme using a foam bead bag on older adults' ability to balance and the strength of their lower extremities and compare the effect with no exercise and foam pad exercise using the same programme.MethodsA total of 24 older adults were allocated into one of three groups: control (n=8), foam pad exercise (n=8) and foam bead bag exercise (n=8). The foam pad exercise and foam bead bag exercise groups carried out a programme consisting of 30 minutes of exercise performed twice a week for 5 weeks. The control group did not participate in an exercise programme. Participants' balance abilities were measured using the Fullerton Advanced Balance Scale, the Timed Up and Go Test and the Single-Leg Stance Test. The strength of their lower extremities was measured using the 30-second sit-to-stand test.ResultsThe Fullerton Advanced Balance scale and 30-second sit-to-stand scores significantly improved in the foam pad exercise and foam bead bag exercise groups. Both of these groups also demonstrated significant improvements in Timed Up and Go tests. The amount of time that participants were able to stand on one leg while unassisted significantly increased in the foam bead bag group only. No significant differences were found in balance ability or lower extremity strength in the control group.ConclusionsA foam bead bag is a suitable alternative to a foam pad when performing exercises to improve balance and strength of the lower extremities in older adults.


1999 ◽  
Author(s):  
Maruti R. Gudavalli ◽  
Jerrilyn A. Backman ◽  
Steven J. Kirstukas ◽  
Anant V. Kadiyala ◽  
Avinash G. Patwardhan ◽  
...  

Abstract The objective of this study was to determine the electromyographic (EMG) activity of the superficial muscles during the treatment of low back patients during a conservative procedure known as the Cox flexion-distraction procedure. A total of 33 low back pain patients were recruited for this study from chiropractic and allopathic orthopedic clinics. EMG signals were collected while the patient was in a prone relaxed position, during the treatment using the flexion-distraction procedure, and during maximum voluntary exertions in the three planes (flexion, extension, left and right lateral bending, and left and right twisting). The mean values of the Root Mean Square (RMS) values of EMG ratios during treatment versus resting indicate that the muscles are active during the treatment. This activity is more than the activity at rest. However the mean values of the RMS EMG ratios (during treatment versus maximum voluntary contraction) are small indicating that the muscle activity during treatment may not influence the treatment loads. The left and right muscles in all muscle groups were similarly active. During the treatment, erector spinae muscles were the most active, followed by the external oblique, and the rectus abdominus muscles. The results from this study provide quantitative data for the muscle activity during the flexion-distraction treatment. This information can be incorporated into computer models to estimate the loads generated during the flexion-distraction treatment due to the muscle activity compared to the loads generated by the chiropractic physician.


Sign in / Sign up

Export Citation Format

Share Document