scholarly journals RELATIONSHIP OF PELVIC ALIGNMENT WITH BALANCE AND GAIT IN PATIENTS WITH STROKE: A SYSTEMATIC REVIEW

Author(s):  
Ashwini Mishra ◽  
Dr. Suvarna Ganvir

Background- Pelvis is the key structure that connects the spine and the lower limbs. Altered Pelvic Alignment and asymmetrical weight bearing on affected lower limbs is a common problem leading to pelvic instability which may have an effect on balance and gait in patients with stroke. Hence, it was aimed to investigate the interdependence of these three components in patients with stroke. Methods- Four databases (PubMed, Google Scholar, Cochrane, Science Direct) were searched to identify eligible studies using the keywords Pelvic Alignment, Gait, Balance, Stroke. Only observational studies published in last 10 years (2010-2020) were included in this review. Results- Thirteen studies were included in the review conducted on sub-acute and chronic stage. All studies investigated the affection of pelvic mal-alignment, balance and gait in combination of two variables except 3 studies which investigated the combined effect of pelvic inclination on both balance and gait. The abnormal pelvic tilt results in lateral displacement of the pelvis on affected side, altered Base of Support, reduced balance control, asymmetry in weight bearing leading to altered gait. Conclusion- Pelvic tilt, anterior and lateral has a significant impact on static balance, gait variables, weight bearing symmetry.

Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4117 ◽  
Author(s):  
Michelangelo Guaitolini ◽  
Federica Aprigliano ◽  
Andrea Mannini ◽  
Silvestro Micera ◽  
Vito Monaco ◽  
...  

Loss of stability is a precursor to falling and therefore represents a leading cause of injury, especially in fragile people. Thus, dynamic stability during activities of daily living (ADLs) needs to be considered to assess balance control and fall risk. The dynamic margin of stability (MOS) is often used as an indicator of how the body center of mass is located and moves relative to the base of support. In this work, we propose a magneto-inertial measurement unit (MIMU)-based method to assess the MOS of a gait. Six young healthy subjects were asked to walk on a treadmill at different velocities while wearing MIMUs on their lower limbs and pelvis. We then assessed the MOS by computing the lower body displacement with respect to the leading inverse kinematics approach. The results were compared with those obtained using a camera-based system in terms of root mean square deviation (RMSD) and correlation coefficient (ρ). We obtained a RMSD of ≤1.80 cm and ρ ≥ 0.85 for each walking velocity. The findings revealed that our method is comparable to camera-based systems in terms of accuracy, suggesting that it may represent a strategy to assess stability during ADLs in unstructured environments.


2021 ◽  
Vol 6 (1) ◽  
pp. 16
Author(s):  
Kara B. Bellenfant ◽  
Gracie L. Robbins ◽  
Rebecca R. Rogers ◽  
Thomas J. Kopec ◽  
Christopher G. Ballmann

The purpose of this study was to investigate the effects of how limb dominance and joint immobilization alter markers of physical demand and muscle activation during ambulation with axillary crutches. In a crossover, counterbalanced study design, physically active females completed ambulation trials with three conditions: (1) bipedal walking (BW), (2) axillary crutch ambulation with their dominant limb (DOM), and (3) axillary crutch ambulation with their nondominant limb (NDOM). During the axillary crutch ambulation conditions, the non-weight-bearing knee joint was immobilized at a 30-degree flexion angle with a postoperative knee stabilizer. For each trial/condition, participants ambulated at 0.6, 0.8, and 1.0 mph for five minutes at each speed. Heart rate (HR) and rate of perceived exertion (RPE) were monitored throughout. Surface electromyography (sEMG) was used to record muscle activation of the medial gastrocnemius (MG), soleus (SOL), and tibialis anterior (TA) unilaterally on the weight-bearing limb. Biceps brachii (BB) and triceps brachii (TB) sEMG were measured bilaterally. sEMG signals for each immobilization condition were normalized to corresponding values for BW.HR (p < 0.001) and RPE (p < 0.001) were significantly higher for both the DOM and NDOM conditions compared to BW but no differences existed between the DOM and NDOM conditions (p > 0.05). No differences in lower limb muscle activation were noted for any muscles between the DOM and NDOM conditions (p > 0.05). Regardless of condition, BB activation ipsilateral to the ambulating limb was significantly lower during 0.6 mph (p = 0.005) and 0.8 mph (p = 0.016) compared to the same speeds for BB on the contralateral side. Contralateral TB activation was significantly higher during 0.6 mph compared to 0.8 mph (p = 0.009) and 1.0 mph (p = 0.029) irrespective of condition. In conclusion, limb dominance appears to not alter lower limb muscle activation and walking intensity while using axillary crutches. However, upper limb muscle activation was asymmetrical during axillary crutch use and largely dependent on speed. These results suggest that functional asymmetry may exist in upper limbs but not lower limbs during assistive device supported ambulation.


2010 ◽  
Vol 23 (1) ◽  
pp. 35-52 ◽  
Author(s):  
Christina Danielli Coelho de Morais Faria ◽  
Viviane Amaral Saliba ◽  
Luci Fuscaldi Teixeira-Salmela

INTRODUCTION: Sit-to-stand and stand-to-sit are two of the most mechanically demanding activities undertaken in daily life and which are usually impaired in stroke subjects. OBJECTIVES: To determine the distinguishing characteristics in musculoskeletal biomechanical outcomes of the sit-to-stand and stand-to-sit activities with stroke subjects, with an emphasis on the clinical management of stroke disabilities, in a systematic review. MATERIAL AND METHODS: An extensive literature search was performed with the MEDLINE, CINAHL, EMBASE, PEDro, LILACS, and SciELO databases, followed by a manual search, to select studies on musculoskeletal biomechanical outcomes in both activities with stroke subjects, without language restrictions, and published until December/2007. RESULTS: Out of the 432 studies, only 11 reported biomechanical outcomes of both activities and none reached the total score on the selected quality parameters. The majority of the experimental studies which compared groups did not achieve acceptable scores on their methodological quality (PEDRo). The investigated conditions and interventions were also restricted. Only one study compared biomechanical outcomes between the activities, but only evaluated the time spent to perform them. Few musculoskeletal biomechanical outcomes have been investigated, being weight bearing on the lower limbs and duration of the activities the most investigated. CONCLUSION: There is little information regarding musculoskeletal biomechanical outcomes during these activities with stroke subjects and no definite conclusions can be drawn regarding the particularities of these outcomes on their performance with stroke survivors.


2021 ◽  
Vol 17 ◽  
Author(s):  
Muhammad Tariq Rafiq ◽  
Mohamad Shariff Abdul Hamid ◽  
Eliza Hafiz ◽  
Khalid Rashid ◽  
Farid Ahmad Chaudhary

Introduction: Knee osteoarthritis (OA) is a weight-bearing joint disease and is more common in overweight and obese persons. The objective of this study was to determine the role of rehabilitation exercises (REs) of lower limbs on weight, functional strength, and exercise adherence in overweight and obese knee OA patients. Materials And Method: The patients were recruited from the Urban community of Lahore, Pakistan. The patients were divided into the rehabilitation group (RG) and control group (CG). The patients in the RG performed the REs of lower limbs and followed the instructions of daily care (IDC), while the patients in the CG only followed the IDC for 12 weeks. Outcome measures were assessed at pre-test before grouping and post-test after 12-weeks of interventions. The measures included: weight, functional strength, and exercise adherence. The Paired Samples t-test (for the normally distributed data) and the Wilcoxon Signed Ranked Test (for the data that was not normally distributed) were used to analyze the differences within groups from pre to post-test measurements. The analysis of variance 2 × 2 factors and the Mann-Whitney U-test were used to analyze the difference of weight and functional strength respectively between the groups. Results: The patients in the RG reported a statistically significant weight reduction (p < 0.001) and improvement in the functional strength (p < 0.001) within the group. Similarly, the patients in the CG also reported a significant improvement in the scores of functional strength (p = 0.004) within the group. The improvement in the scores of functional strength was greater in the patients of RG than the CG (p < 0.001. Similarly, the patients in the RG reported a statistically significant reduction in weight than the CG (p < 0.001). Conclusion: The REs could improve weight, functional strength and exercise adherence.


2020 ◽  
pp. 1-8
Author(s):  
Stefanie N. Foster ◽  
Michael D. Harris ◽  
Mary K. Hastings ◽  
Michael J. Mueller ◽  
Gretchen B. Salsich ◽  
...  

Context: The authors hypothesized that in people with hip-related groin pain, less static ankle dorsiflexion could lead to compensatory hip adduction and contralateral pelvic drop during step-down. Ankle dorsiflexion may be a modifiable factor to improve ability in those with hip-related groin pain to decrease hip/pelvic motion during functional tasks and improve function. Objective: To determine whether smaller static ankle dorsiflexion angles were associated with altered ankle, hip, and pelvis kinematics during step-down in people with hip-related groin pain. Design: Cross-sectional Setting: Academic medical center. Patients: A total of 30 people with hip-related groin pain (12 males and 18 females; 28.7 [5.3] y) participated. Intervention: None. Main Outcome Measures: Weight-bearing static ankle dorsiflexion with knee flexed and knee extended were measured via digital inclinometer. Pelvis, hip, and ankle kinematics during forward step-down were measured via 3D motion capture. Static ankle dorsiflexion and kinematics were compared with bivariate correlations. Results: Smaller static ankle dorsiflexion angles were associated with smaller ankle dorsiflexion angles during the step-down for both the knee flexed and knee extended static measures. Among the total sample, smaller static ankle dorsiflexion angle with knee flexed was associated with greater anterior pelvic tilt and greater contralateral pelvic drop during the step-down. Among only those who did not require a lowered step for safety, smaller static ankle dorsiflexion angles with knee flexed and knee extended were associated with greater anterior pelvic tilt, greater contralateral pelvic drop, and greater hip flexion. Conclusions: Among those with hip-related groin pain, smaller static ankle dorsiflexion angles are associated with less ankle dorsiflexion motion and altered pelvis and hip kinematics during a step-down. Future research is needed to assess the effect of treating restricted ankle dorsiflexion on quality of motion and symptoms in patients with hip-related groin pain.


2014 ◽  
Vol 21 (4) ◽  
pp. 49-53
Author(s):  
L. K Mikhailova ◽  
M. A Eryomushkin ◽  
I. S Kosov ◽  
S. A Mikhailova ◽  
N. V Murav’yova

One hundred seventeen patients with hemihypoplasia and discrepancy of lower limbs length of 1 - 3 cm were examined during the period from 2008 through 2013. Series of functional tests to evaluate conditional and coordination skills as well as stabilometry in European and American variants were performed. All patients demonstrated frontal postural disorders, marked weakness of the abdominal muscles and muscles of the back that resulted caused postural imbalance that resulted in formation of myofascial trigger points and development specific pain syndrome. Stabilometry and coordination tests results showed the predominance of proprioceptive body balance control over the visual one.


2021 ◽  
Author(s):  
Yoshiaki Kataoka ◽  
Tomohiro Shimizu ◽  
Ryo Takeda ◽  
Shigeru Tadano ◽  
Yuki Saito ◽  
...  

Abstract Background: Hip osteoarthritis (OA) is a musculoskeletal condition that makes walking difficult due to pain induced by weight-bearing activities. Treadmills that support the body weight (BW) reduce the load on the lower limbs, and those equipped with a lower-body positive-pressure (LBPP) device, developed as a new method for unweighting, significantly reduce pain in patients with knee OA. However, the effects of unweighting on gait kinematics remain unclear in patients with hip OA. Therefore, we investigated the effects of unweighting on kinematics in patients with hip OA during walking on a treadmill equipped with an LBPP device. Methods: A total of 15 women with hip OA and 15 age-matched female controls wore a three-dimensional (3-D) motion analysis system and walked at a self-selected speed on the LBPP treadmill. Data regarding self-reported hip pain using a numeric rating scale (NRS) in which the scores 0 and 10 represented no pain and the worst pain, respectively, under three different BW conditions (100%, 75%, and 50%) were collected. Moreover, 3-D peak joint angles during gait under each condition were calculated and compared. Results: In the hip OA group, the NRS pain scores at 50% and 75% BW conditions significantly decreased compared with that at 100% BW condition (50%, P=0.002; 75%, P=0.026), and the peak hip extension angle decreased compared with that in the healthy controls (P=0.044). In both groups, unweighting significantly decreased the peak hip (P<0.001) and knee (P<0.001) flexion angles and increased the peak ankle plantar flexion angle (P<0.001) during walking. Conclusions: Unweighting by the LBPP treadmill decreased pain in the hip OA group but did not drastically alter the gait kinematics compared with that in the control group. Therefore, regarding the use of the LBPP treadmill for patients with hip OA, clinicians should consider the benefits of pain reduction rather than the kinematic changes.


Biomedicine ◽  
2021 ◽  
Vol 41 (3) ◽  
pp. 669-677
Author(s):  
K Kotteeswaran ◽  
Natarajan Shanmugasundaram ◽  
S. Shalini ◽  
M.V. Sowmya

Introduction and Aim:Osteoarthrosis is defined as degenerative condition of the synovial joints. Weak thigh muscle will cause impaired walking and balance and leads to risk of fall during activities of daily living. Use of MD and UD wobble board is hypothesized to improve balance and proprioception. So, pain, muscle power and proprioception are clinically important for balance control. Hence there is a need to study weight bearing exercise to hip abductor in various balance strategies to achieve muscle strength, joint position sense, balance, and activity of daily living.   Methodology: Knee osteoarthrosis subjects(n=219) were selected according to selection criteria andwere randomly allocated into 3 groups as multidirectional wobble board lateral step-up exercise group, unidirectional wobble board lateral step-up exercise group and control group. The pre-test KOOS pain, symptoms and ADL measurements were taken before the intervention and another measurement during the 2nd week of intervention and at the end of the intervention period during 4thweek post-test measurements were measured and statistically analysed.   Results:  At the end of 4th week control, UD and MD was found to be statistically significant with H=200.192 with p<0.001. KOOS symptoms between 3 groups was found to be statistically significant with H=200.288 and p <0.001. KOOS ADL values was found to be statistically significant between 3 groups with H=193.640 and p<0.001.   Conclusion: This study concludes that both unidirectional and multidirectional wobble board lateral step-up exercise showed improvement with KOOS pain, symptom and ADL scores compared to control group.


2021 ◽  
Author(s):  
Kazuya Kaneda ◽  
Kengo Harato ◽  
Satoshi Oki ◽  
Yoshitake Yamada ◽  
Masaya Nakamura ◽  
...  

Abstract Background The classification of knee osteoarthritis is an essential clinical issue, particularly in terms of diagnosing early knee osteoarthritis. However, the evaluation of three-dimensional limb alignment on two-dimensional radiographs is limited. This study evaluated the three-dimensional changes induced by weight-bearing in the alignments of lower limbs at various stages of knee osteoarthritis.Methods 45 knees of 25 patients (69.9 ± 8.9 years) with knee OA were examined in the study. CT images of the entire leg were obtained in the supine and standing positions using conventional CT and 320 low-detector upright CT, respectively. Next, the differences in the three-dimensional alignment of the entire leg in the supine and standing positions were obtained using 3D-3D surface registration technique, and those were compared for each Kellgren–Lawrence grade. Results Increased flexion, adduction, and tibial internal rotation were observed in the standing position, as opposed to the supine position. Kellgren–Lawrence grades 1 and 4 showed significant differences in flexion, adduction, and tibial internal rotation between two postures. Grades 2 and 4 showed significant differences in adduction, while grades 1 and 2, and 1 and 3 showed significant differences in tibial internal rotation between standing and supine positions.Conclusions Weight-bearing increased the three-dimensional deformities in knees with osteoarthritis. Particularly, increased tibial internal rotation was observed in patients with grades 2 and 3 compared to those with grade 1. The increase in tibial internal rotation due to weight-bearing is a key pathologic feature to detect early osteoarthritic change in knees undergoing osteoarthritis.


Sign in / Sign up

Export Citation Format

Share Document