scholarly journals Silk fibroin nanofibers loaded with hydroxytyrosol from hydrolysis of oleuropein in olive leaf extract

2018 ◽  
Vol 1 (3-4) ◽  
pp. 90-98 ◽  
Author(s):  
Oguz Bayraktar ◽  

The purpose of this study was to prepare antimicrobial silk fibroin nanofibers from the aqueous formic acid solutions of silk fibroin and hydroxytyrosol with the in situ hydrolysis of oleouropein present in olive leaf extract using electrospinning method. With the use of aqueous formic acid solution of olive leaf extract and silk fibroin resulted in more uniform and beadless nanofibers. Morphological properties of electrospun nanofibers were investigated using Scanning Electron Microscope (SEM). The diameter of electrospun nanofibers ranged between 70 nm to 150 nm. The nanofiber diameter did not changed much with increasing concentration of olive leaf extract added into silk fibroin solution to be used in electrospinning process. The increase in olive leaf extract concentration resulted in beadless and uniform nanofiber structures. The average diameter of the nanofibers prepared with fibroin solution having 10 % olive leaf extract was determined as 85 ± 10 nm. Results revealing the formation of smoother and uniform nanofibers was attributed to the crosslinking effect of oleuropein and polyphenols present in olive leaf extract with certain functional groups in silk fibroin structure. Antibacterial properties of hydroxytyrosol loaded nanofibers against Staphylococcus epidermidis (Gram +) and Escherichia coli (Gram -) were confirmed with the clear inhibition zones observed in disc diffusion tests. Silk Fibroin nanofibers loaded with hydroxytyrosol may offer a new alternative biomaterial to be used in wound dressing or medical textile applications.

2007 ◽  
Vol 342-343 ◽  
pp. 813-816 ◽  
Author(s):  
Lim Jeong ◽  
Kuen Yong Lee ◽  
Won Ho Park

Nonwoven nanofiber matrices were prepared by electrospinning a solution of silk fibroin (SF) dissolved either in formic acid or in 1,1,1,3,3,3-hexafluoro-2-isopropyl alcohol (HFIP). The mean diameter of the electrospun nanofibers prepared from SF dissolved in formic acid was 80 nm with a unimodal size distribution, which was smaller than those prepared from HFIP (380 nm). SF nanofibers were then treated with an aqueous methanol solution, and structural changes due to solvent-induced crystallization of SF were investigated using IR and 13C solid-state CP/MAS NMR spectroscopy. SF nanofibers prepared from formic acid were found to have a higher proportion of β-sheet conformations than those prepared from HFIP. Methanol treatment provided a fast and effective means to alter the secondary structure of both types of SF nanofibers from a random coil form to a β-sheet form. As demonstrated in the present study, this approach to controlling the dimensions and secondary structure of proteins using various solvents may be useful for the design and tailoring of materials for biomedical applications, especially for tissue engineering applications.


Molecules ◽  
2015 ◽  
Vol 20 (2) ◽  
pp. 2903-2921 ◽  
Author(s):  
Jiao-Jiao Yuan ◽  
Cheng-Zhang Wang ◽  
Jian-Zhong Ye ◽  
Ran Tao ◽  
Yu-Si Zhang

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Toshio Mikami ◽  
Jimmy Kim ◽  
Jonghyuk Park ◽  
Hyowon Lee ◽  
Pongson Yaicharoen ◽  
...  

AbstractObesity is a risk factor for development of metabolic diseases and cognitive decline; therefore, obesity prevention is of paramount importance. Neuronal mitochondrial dysfunction induced by oxidative stress is an important mechanism underlying cognitive decline. Olive leaf extract contains large amounts of oleanolic acid, a transmembrane G protein-coupled receptor 5 (TGR5) agonist, and oleuropein, an antioxidant. Activation of TGR5 results in enhanced mitochondrial biogenesis, which suggests that olive leaf extract may help prevent cognitive decline through its mitochondrial and antioxidant effects. Therefore, we investigated olive leaf extract’s effects on obesity, cognitive decline, depression, and endurance exercise capacity in a mouse model. In physically inactive mice fed a high-fat diet, olive leaf extract administration suppressed increases in fat mass and body weight and prevented cognitive declines, specifically decreased working memory and depressive behaviors. Additionally, olive leaf extract increased endurance exercise capacity under atmospheric and hypoxic conditions. Our study suggests that these promising effects may be related to oleanolic acid’s improvement of mitochondrial function and oleuropein’s increase of antioxidant capacity.


2021 ◽  
Vol 134 ◽  
pp. 111139
Author(s):  
Reyes Benot-Dominguez ◽  
Maria Grazia Tupone ◽  
Vanessa Castelli ◽  
Michele d’Angelo ◽  
Elisabetta Benedetti ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Ying Shen ◽  
Su Jin Song ◽  
Narae Keum ◽  
Taesun Park

The present study aimed to investigate whether olive leaf extract (OLE) prevents high-fat diet (HFD)-induced obesity in mice and to explore the underlying mechanisms. Mice were randomly divided into groups that received a chow diet (CD), HFD, or 0.15% OLE-supplemented diet (OLD) for 8 weeks. OLD-fed mice showed significantly reduced body weight gain, visceral fat-pad weights, and plasma lipid levels as compared with HFD-fed mice. OLE significantly reversed the HFD-induced upregulation of WNT10b- and galanin-mediated signaling molecules and key adipogenic genes (PPARγ, C/EBPα, CD36, FAS, and leptin) in the epididymal adipose tissue of HFD-fed mice. Furthermore, the HFD-induced downregulation of thermogenic genes involved in uncoupled respiration (SIRT1, PGC1α, and UCP1) and mitochondrial biogenesis (TFAM, NRF-1, and COX2) was also significantly reversed by OLE. These results suggest that OLE exerts beneficial effects against obesity by regulating the expression of genes involved in adipogenesis and thermogenesis in the visceral adipose tissue of HFD-fed mice.


Sign in / Sign up

Export Citation Format

Share Document