Stable-Isotope/Air-Temperature relationships in Ice Cores from Dolleman Island and the Palmer Land Plateau, Antarctic Peninsula

1988 ◽  
Vol 10 ◽  
pp. 130-136 ◽  
Author(s):  
David A. Peel ◽  
Robert Mulvaney ◽  
Brian M. Davison

Whilst stable-isotope analysis of ice cores yields the best quantitative evidence for past climate, there remains considerable uncertainty about the detailed relationship between the isotopic composition and air temperature. Analysis of two ice cores from the Antarctic Peninsula (a 47.2 m core from the Palmer Land plateau – 74°01’S, 70°38’W, and a 32 m core from Dolleman Island–70°35.2’S, 60°55.5’W) has shown that an oxygen-isotope/ temperature relationship exists at a resolution of inter-annual variations during the period 1938–86. All the major regional temperature anomalies, known from climatic records at several stations, are visible in the isotope profiles, including the overall temperature increase between 1960 and 1980.An isotope–temperature gradient of 0.5–0.6‰/°C is indicated for the climatic interpretation of isotopic fluctuations in ice cores recovered from the region. This gradient is considerably smaller than that (0.95‰/°C) obtained from a comparison of spatial variations in the mean annual parameters. The discrepancy appears to be due mainly to an inherent biasing in the isotope profiles, which record temperature only during periods of snowfall. The effect is particularly severe in the winter months and can be expected in other areas of Antarctica where a significant part of the snow accumulation is cyclonic.

1988 ◽  
Vol 10 ◽  
pp. 130-136 ◽  
Author(s):  
David A. Peel ◽  
Robert Mulvaney ◽  
Brian M. Davison

Whilst stable-isotope analysis of ice cores yields the best quantitative evidence for past climate, there remains considerable uncertainty about the detailed relationship between the isotopic composition and air temperature. Analysis of two ice cores from the Antarctic Peninsula (a 47.2 m core from the Palmer Land plateau – 74°01’S, 70°38’W, and a 32 m core from Dolleman Island–70°35.2’S, 60°55.5’W) has shown that an oxygen-isotope/ temperature relationship exists at a resolution of inter-annual variations during the period 1938–86. All the major regional temperature anomalies, known from climatic records at several stations, are visible in the isotope profiles, including the overall temperature increase between 1960 and 1980. An isotope–temperature gradient of 0.5–0.6‰/°C is indicated for the climatic interpretation of isotopic fluctuations in ice cores recovered from the region. This gradient is considerably smaller than that (0.95‰/°C) obtained from a comparison of spatial variations in the mean annual parameters. The discrepancy appears to be due mainly to an inherent biasing in the isotope profiles, which record temperature only during periods of snowfall. The effect is particularly severe in the winter months and can be expected in other areas of Antarctica where a significant part of the snow accumulation is cyclonic.


1994 ◽  
Vol 20 ◽  
pp. 420-426 ◽  
Author(s):  
L. G. Thompson ◽  
D. A. Peel ◽  
E. Mosley-thompson ◽  
R. Mulvaney ◽  
J. Dal ◽  
...  

A 480 year record of the oxygen-isotope ratios, dust content, chemical species and net accumulation from ice cores drilled in 1989 90 on Dyer Plateau in the Antarctic Peninsula is presented. The continuous analyses of small (sub-annual) samples reveal well-preserved annual variations in both sulfate content and δ18O, thus allowing an excellent time-scale to be established.This history reveals a recent pronounced warming in which the last two decades have been among the warmest in the last five centuries. Furthermore, unlike in East Antarctica, on Dyer Plateau conditions appear to have been fairly normal from AD 1500 to 1850 with cooler conditions from 1850 to 1930 and a warming trend dominating since 1930. Reconstructed annual layer thicknesses suggest an increase in net accumulation beginning early in the 19th century and continuing to the present. This intuitive conflict between increasing net accumulation and depleted δ18O (cooler climate) in the 19th century appears widespread in the peninsula region and challenges our understanding of the physical relationships among moisture sources, air temperatures and snow accumulation. The complex meteorological regime in the Antarctic Peninsula region complicates meaningful interpretation of proxy indicators and results in a strong imprint of local high-frequency processes upon the larger-scale climate picture.


1994 ◽  
Vol 20 ◽  
pp. 420-426 ◽  
Author(s):  
L. G. Thompson ◽  
D. A. Peel ◽  
E. Mosley-thompson ◽  
R. Mulvaney ◽  
J. Dal ◽  
...  

A 480 year record of the oxygen-isotope ratios, dust content, chemical species and net accumulation from ice cores drilled in 1989 90 on Dyer Plateau in the Antarctic Peninsula is presented. The continuous analyses of small (sub-annual) samples reveal well-preserved annual variations in both sulfate content and δ18O, thus allowing an excellent time-scale to be established.This history reveals a recent pronounced warming in which the last two decades have been among the warmest in the last five centuries. Furthermore, unlike in East Antarctica, on Dyer Plateau conditions appear to have been fairly normal from AD 1500 to 1850 with cooler conditions from 1850 to 1930 and a warming trend dominating since 1930. Reconstructed annual layer thicknesses suggest an increase in net accumulation beginning early in the 19th century and continuing to the present. This intuitive conflict between increasing net accumulation and depleted δ18O (cooler climate) in the 19th century appears widespread in the peninsula region and challenges our understanding of the physical relationships among moisture sources, air temperatures and snow accumulation. The complex meteorological regime in the Antarctic Peninsula region complicates meaningful interpretation of proxy indicators and results in a strong imprint of local high-frequency processes upon the larger-scale climate picture.


2006 ◽  
Vol 43 ◽  
pp. 49-60 ◽  
Author(s):  
Vladimir B. Aizen ◽  
Elena M. Aizen ◽  
Daniel R. Joswiak ◽  
Koji Fujita ◽  
Nozomu Takeuchi ◽  
...  

AbstractSeveral firn/ice cores were recovered from the Siberian Altai (Belukha plateau), central Tien Shan (Inilchek glacier) and the Tibetan Plateau (Zuoqiupu glacier, Bomi) from 1998 to 2003. The comparison analyses of stable-isotope/geochemistry records obtained from these firn/ice cores identified the physical links controlling the climate-related signals at the seasonal-scale variability. The core data related to physical stratigraphy, meteorology and synoptic atmospheric dynamics were the basis for calibration, validation and clustering of the relationships between the firn-/ice-core isotope/ geochemistry and snow accumulation, air temperature and precipitation origin. The mean annual accumulation (in water equivalent) was 106 gcm−2 a−1 at Inilchek glacier, 69 gcm−2 a−1 at Belukha and 196 g cm−2 a−1 at Zuoqiupu. The slopes in regression lines between the δ18O ice-core records and air temperature were found to be positive for the Tien Shan and Altai glaciers and negative for southeastern Tibet, where heavy amounts of isotopically depleted precipitation occur during summer monsoons. The technique of coupling synoptic climatology and meteorological data with δ18O and d-excess in firn-core records was developed to determine climate-related signals and to identify the origin of moisture. In Altai, two-thirds of accumulation from 1984 to 2001 was formed from oceanic precipitation, and the rest of the precipitation was recycled over Aral–Caspian sources. In the Tien Shan, 87% of snow accumulation forms by precipitation originating from the Aral–Caspian closed basin, the eastern Mediterranean and Black Seas, and 13% from the North Atlantic.


2012 ◽  
Vol 8 (6) ◽  
pp. 5867-5891 ◽  
Author(s):  
I. Mariani ◽  
A. Eichler ◽  
S. Brönnimann ◽  
R. Auchmann ◽  
T. M. Jenk ◽  
...  

Abstract. Water stable isotope ratios and net snow accumulation in ice cores are usually interpreted as temperature and precipitation proxies. However, only in a few cases a direct calibration with instrumental data has been attempted. In this study we took advantage of the dense network of observations in the European Alpine region to rigorously test the relationship of the proxy data from two highly-resolved ice cores with local temperature and precipitation, respectively, on an annual basis. We focused on the time period 1961–2001 with the highest amount and quality of meteorological data and the minimal uncertainty in ice core dating (±1 yr). The two ice cores come from Fiescherhorn glacier (Northern Alps, 3900 m a.s.l.) and Grenzgletscher (Southern Alps, 4200 m a.s.l.). Due to the orographic barrier, the two flanks of the Alpine chain are affected by distinct patterns of precipitation. Therefore, the different location of the two ice cores offers the unique opportunity to test whether the precipitation proxy reflects this very local condition. We obtained a significant spatial correlation between annual δ18O and regional temperature at Fiescherhorn. Due to the pronounced intraseasonal to interannual variability of precipitation at Grenzgletscher, significant results were only found when weighting the temperature with precipitation. For this site, disentangling the temperature from the precipitation signal was thus not possible. Significant spatial correlations between net accumulation and precipitation were found for both sites but required the record from the Fiescherhorn glacier to be shifted by −1 yr (within the dating uncertainty). The study underlines that even for well-resolved ice core records, interpretation of proxies on an annual or even sub-annual basis remains critical. This is due to both, dating issues and the fact that the signal preservation intrinsically depends on precipitation.


2021 ◽  
Vol 25 (1) ◽  
pp. 108-118
Author(s):  
Yalalt Nyamgerel ◽  
Sang-Bum Hong ◽  
Yeongcheol Han ◽  
Songyi Kim ◽  
Jeonghoon Lee ◽  
...  

Abstract Polar snow pits or ice cores preserve valuable information derived from the atmosphere on past climate and environment changes. A 1.57-m snow-pit record from the coastal site (Styx Glacier) in eastern Antarctica covering the period from January 2011 to January 2015 was discussed and compared with meteorological variables. The dominant contribution of the deposition of sea-salt aerosols due to the proximity of the site to the ocean and processes of sea ice formation was revealed in the ionic concentrations. Consistent seasonal peaks in δ 18 O, δ D, MSA, , and indicate the strong enhancement of their source during warm periods, whereas the sea-salt ions (Na + , K + , Mg 2+ , Ca 2+ , Cl − , and ) exhibit a distinct distribution. Monthly mean δ 18 O positively correlates with the air temperature record from an automatic weather station (AWS) located in the main wind direction. Despite the shortness of the record, we suspect that the slight depletion of the isotopic composition and lowering of the snow accumulation could be related to the cooler air temperature with the decrease of open sea area. Consistency with previous studies and the positive correlation of sea-salt ions in the snow pit indicate the relatively good preservation of snow layers with noticeable climate and environmental signals [e.g., changes in sea ice extent (SIE) or sea surface temperature]. We report a new snow-pit record, which would be comparative and supportive to understand similar signals preserved in deeper ice cores in this location.


1984 ◽  
Vol 30 (104) ◽  
pp. 112-115 ◽  
Author(s):  
William L. Stockton ◽  
Ted E. DeLaca ◽  
Michael J. Deniro

AbstractStable isotope ratios and salinities of ice samples obtained from a submarine ice cliff at Explorers Cove demonstrate that the upper parts of the ice cliff have frozen directly from sea-water and are an underwater expression of permafrost, whereas the lower parts appear to be partially glacial in origin. These results indicate that there may be ice cores in the moraines of Explorers Cove, in which case the coastline of McMurdo Sound is more extensively ice-cored than previously known.


1988 ◽  
Vol 11 ◽  
pp. 207-207 ◽  
Author(s):  
David A. Peel ◽  
Robert Mulvaney

Trends in climate affecting the West Antarctic ice sheet may be detected first in the Antarctic Peninsula region. Although the area contains the most comprehensive weather records for any part of Antarctica, reliable snow-accumulation data are lacking.Mainly as a result of the large snow-accumulation rate in the region (typically in the range 4.0–10.0 kg m−2 a−1), stratigraphie evidence of climate derived from ice cores can be resolved in much greater detail than is possible over most of the continent. Ice cores have been drilled at two sites, representing the extremes of climate type encountered in the region. A 133 m core has been obtained from Dolleman Island (70°35.2′S, 60°55.5′W) to represent the continental-type climate of the Weddell coast region, and an 87 m core has been obtained from the Palmer Land plateau (74°01′S, 70°38′W) to represent the more maritime regime of the west coast and central areas. Replicated cores were obtained at both sites in order to assess the contribution of local noise factors to the climatic signal preserved in the cores. Climatic trends during the period 1938–86 have been assessed on the basis of stable-isotope analysis of the top 47 m of the Palmer Land core and of the top 32 m of the Dolleman Island core.A statistical analysis of derived profiles of mean annual δ18O and accumulation rate indicates that the local noise factors at these sites are sufficiently small that data averaged over periods as short as 5 years should reveal climatic shifts at the level of 0.2% and 5% respectively. These changes are much smaller than trends that have actually occurred during the past 50 years.The most notable trend over the past 30 years is an increase of more than 30% in the snow-accumulation rate that has occurred in parallel with an overall temperature increase of 0.06°C/a during the same period. Increases of similar magnitude can be inferred from studies in East Antarctica, and may be related to a significant increase in precipitation rate that has been documented recently at mid-to high-latitude stations in the Northern Hemisphere. The finding may have relevance to studies of the possible consequences of a CO2-induced climate change. More extensive accumulation time series are now required from Antarctica, if satisfactory models of the long-term balance of the ice sheet are to be derived.


2012 ◽  
Vol 279 (1737) ◽  
pp. 2433-2441 ◽  
Author(s):  
Jacqueline Codron ◽  
Daryl Codron ◽  
Matt Sponheimer ◽  
Kevin Kirkman ◽  
Kevin J. Duffy ◽  
...  

Longitudinal studies have revealed how variation in resource use within consumer populations can impact their dynamics and functional significance in communities. Here, we investigate multi-decadal diet variations within individuals of a keystone megaherbivore species, the African elephant ( Loxodonta africana ), using serial stable isotope analysis of tusks from the Kruger National Park, South Africa. These records, representing the longest continuous diet histories documented for any extant species, reveal extensive seasonal and annual variations in isotopic—and hence dietary—niches of individuals, but little variation between them. Lack of niche distinction across individuals contrasts several recent studies, which found relatively high levels of individual niche specialization in various taxa. Our result is consistent with theory that individual mammal herbivores are nutritionally constrained to maintain broad diet niches. Individual diet specialization would also be a costly strategy for large-bodied taxa foraging over wide areas in spatio-temporally heterogeneous environments. High levels of within-individual diet variability occurred within and across seasons, and persisted despite an overall increase in inferred C 4 grass consumption through the twentieth century. We suggest that switching between C 3 browsing and C 4 grazing over extended time scales facilitates elephant survival through environmental change, and could even allow recovery of overused resources.


1988 ◽  
Vol 11 ◽  
pp. 207 ◽  
Author(s):  
David A. Peel ◽  
Robert Mulvaney

Trends in climate affecting the West Antarctic ice sheet may be detected first in the Antarctic Peninsula region. Although the area contains the most comprehensive weather records for any part of Antarctica, reliable snow-accumulation data are lacking. Mainly as a result of the large snow-accumulation rate in the region (typically in the range 4.0–10.0 kg m−2 a−1), stratigraphie evidence of climate derived from ice cores can be resolved in much greater detail than is possible over most of the continent. Ice cores have been drilled at two sites, representing the extremes of climate type encountered in the region. A 133 m core has been obtained from Dolleman Island (70°35.2′S, 60°55.5′W) to represent the continental-type climate of the Weddell coast region, and an 87 m core has been obtained from the Palmer Land plateau (74°01′S, 70°38′W) to represent the more maritime regime of the west coast and central areas. Replicated cores were obtained at both sites in order to assess the contribution of local noise factors to the climatic signal preserved in the cores. Climatic trends during the period 1938–86 have been assessed on the basis of stable-isotope analysis of the top 47 m of the Palmer Land core and of the top 32 m of the Dolleman Island core. A statistical analysis of derived profiles of mean annual δ18O and accumulation rate indicates that the local noise factors at these sites are sufficiently small that data averaged over periods as short as 5 years should reveal climatic shifts at the level of 0.2% and 5% respectively. These changes are much smaller than trends that have actually occurred during the past 50 years. The most notable trend over the past 30 years is an increase of more than 30% in the snow-accumulation rate that has occurred in parallel with an overall temperature increase of 0.06°C/a during the same period. Increases of similar magnitude can be inferred from studies in East Antarctica, and may be related to a significant increase in precipitation rate that has been documented recently at mid-to high-latitude stations in the Northern Hemisphere. The finding may have relevance to studies of the possible consequences of a CO2-induced climate change. More extensive accumulation time series are now required from Antarctica, if satisfactory models of the long-term balance of the ice sheet are to be derived.


Sign in / Sign up

Export Citation Format

Share Document