scholarly journals The use of Catastrophe Theory to Analyse the Stability and Toppling of Icebergs

1980 ◽  
Vol 1 ◽  
pp. 49-54 ◽  
Author(s):  
J. F. Nye ◽  
J. R. Potter

As an iceberg melts, the resulting change of shape can cause it to list gradually or to become unstable and topple over suddenly. Similarly, when an iceberg breaks up some of the individual pieces may capsize. We have used Zeeman’s analysis of the stability of ships, which is based on catastrophe theory, to examine this problem. We deal only with statical equilibrium; dynamical effects induced by water motion are important for ships, but very large icebergs have correspondingly small oscillations and therefore dynamical aspects are ignored in this first study. The advantage of the catastrophe-theory approach over the conventional stability theory used by naval architects lies in the conceptual clarity that it provides. In particular, it gives a three-dimensional geometrical picture that enables one to see all the possible equilibrium attitudes of a given iceberg, whether they are stable or unstable, whether a stable attitude is dangerously close to an unstable one, and how positions of stable equilibrium can be destroyed as the shape of the iceberg evolves with time.By making two-dimensional computations we examine the stability of two different shapes of cross-section, rectangles and trapezia, with realistic density distributions. These shapes may list gradually or topple suddenly as a single parameter is changed. For example, we find that a conversion of the vertical sides of a rectangular section into the slightly inward-sloping sides of a trapezium has a comparatively large adverse effect on stability. The main purpose of this work is to suggest how the stability characteristics of any selected iceberg may be investigated systematically.

Author(s):  
Steven L. Garrett

Abstract In this chapter, solutions to the wave equation that satisfies the boundary conditions within three-dimensional enclosures of different shapes are derived. This treatment is very similar to the two-dimensional solutions for waves on a membrane of Chap. 10.1007/978-3-030-44787-8_6. Many of the concepts introduced in Sect. 10.1007/978-3-030-44787-8_6#Sec1 for rectangular membranes and Sect. 10.1007/978-3-030-44787-8_6#Sec5 for circular membranes are repeated here with only slight modifications. These concepts include separation of variables, normal modes, modal degeneracy, and density of modes, as well as adiabatic invariance and the splitting of degenerate modes by perturbations. Throughout this chapter, familiarity with the results of Chap. 10.1007/978-3-030-44787-8_6 will be assumed. The similarities between the standing-wave solutions within enclosures of different shapes are stressed. At high enough frequencies, where the individual modes overlap, statistical energy analysis will be introduced to describe the diffuse (reverberant) sound field.


2021 ◽  
Vol 18 (179) ◽  
pp. 20210270
Author(s):  
Marco Uttieri ◽  
Peter Hinow ◽  
Raffaele Pastore ◽  
Giuseppe Bianco ◽  
Maurizio Ribera d’Alcalá ◽  
...  

Crowding has a major impact on the dynamics of many material and biological systems, inducing effects as diverse as glassy dynamics and swarming. While this issue has been deeply investigated for a variety of living organisms, more research remains to be done on the effect of crowding on the behaviour of copepods, the most abundant metazoans on Earth. To this aim, we experimentally investigate the swimming behaviour, used as a dynamic proxy of animal adaptations, of males and females of the calanoid copepod Centropages typicus at different densities of individuals (10, 50 and 100 ind. l −1 ) by performing three-dimensional single-organism tracking. We find that the C. typicus motion is surprisingly unaffected by crowding over the investigated density range. Indeed, the mean square displacements as a function of time always show a crossover from ballistic to Fickian regime, with poor variations of the diffusion constant on increasing the density. Close to the crossover, the displacement distributions display exponential tails with a nearly density-independent decay length. The trajectory fractal dimension, D 3D ≅ 1.5, and the recently proposed ‘ecological temperature’ also remain stable on increasing the individual density. This suggests that, at least over the range of animal densities used, crowding does not impact on the characteristics of C. typicus swimming motion, and that a homeostatic mechanism preserves the stability of its swimming performance.


Author(s):  
B. Carragher ◽  
M. Whittaker

Techniques for three-dimensional reconstruction of macromolecular complexes from electron micrographs have been successfully used for many years. These include methods which take advantage of the natural symmetry properties of the structure (for example helical or icosahedral) as well as those that use single axis or other tilting geometries to reconstruct from a set of projection images. These techniques have traditionally relied on a very experienced operator to manually perform the often numerous and time consuming steps required to obtain the final reconstruction. While the guidance and oversight of an experienced and critical operator will always be an essential component of these techniques, recent advances in computer technology, microprocessor controlled microscopes and the availability of high quality CCD cameras have provided the means to automate many of the individual steps.During the acquisition of data automation provides benefits not only in terms of convenience and time saving but also in circumstances where manual procedures limit the quality of the final reconstruction.


Methodology ◽  
2006 ◽  
Vol 2 (4) ◽  
pp. 142-148 ◽  
Author(s):  
Pere J. Ferrando

In the IRT person-fluctuation model, the individual trait levels fluctuate within a single test administration whereas the items have fixed locations. This article studies the relations between the person and item parameters of this model and two central properties of item and test scores: temporal stability and external validity. For temporal stability, formulas are derived for predicting and interpreting item response changes in a test-retest situation on the basis of the individual fluctuations. As for validity, formulas are derived for obtaining disattenuated estimates and for predicting changes in validity in groups with different levels of fluctuation. These latter formulas are related to previous research in the person-fit domain. The results obtained and the relations discussed are illustrated with an empirical example.


2010 ◽  
Vol 3 (2) ◽  
pp. 156-180 ◽  
Author(s):  
Renáta Gregová ◽  
Lívia Körtvélyessy ◽  
Július Zimmermann

Universals Archive (Universal #1926) indicates a universal tendency for sound symbolism in reference to the expression of diminutives and augmentatives. The research ( Štekauer et al. 2009 ) carried out on European languages has not proved the tendency at all. Therefore, our research was extended to cover three language families – Indo-European, Niger-Congo and Austronesian. A three-step analysis examining different aspects of phonetic symbolism was carried out on a core vocabulary of 35 lexical items. A research sample was selected out of 60 languages. The evaluative markers were analyzed according to both phonetic classification of vowels and consonants and Ultan's and Niewenhuis' conclusions on the dominance of palatal and post-alveolar consonants in diminutive markers. Finally, the data obtained in our sample languages was evaluated by means of a three-dimensional model illustrating the place of articulation of the individual segments.


Author(s):  
Abdelkrim Merah ◽  
Ridha Kelaiaia ◽  
Faiza Mokhtari

Abstract The Taylor-Couette flow between two rotating coaxial cylinders remains an ideal tool for understanding the mechanism of the transition from laminar to turbulent regime in rotating flow for the scientific community. We present for different Taylor numbers a set of three-dimensional numerical investigations of the stability and transition from Couette flow to Taylor vortex regime of a viscous incompressible fluid (liquid sodium) between two concentric cylinders with the inner one rotating and the outer one at rest. We seek the onset of the first instability and we compare the obtained results for different velocity rates. We calculate the corresponding Taylor number in order to show its effect on flow patterns and pressure field.


2019 ◽  
Vol 952 (10) ◽  
pp. 47-54
Author(s):  
A.V. Komissarov ◽  
A.V. Remizov ◽  
M.M. Shlyakhova ◽  
K.K. Yambaev

The authors consider hand-held laser scanners, as a new photogrammetric tool for obtaining three-dimensional models of objects. The principle of their work and the newest optical systems based on various sensors measuring the depth of space are described in detail. The method of simultaneous navigation and mapping (SLAM) used for combining single scans into point cloud is outlined. The formulated tasks and methods for performing studies of the DotProduct (USA) hand-held laser scanner DPI?8X based on a test site survey are presented. The accuracy requirements for determining the coordinates of polygon points are given. The essence of the performed experimental research of the DPI?8X scanner is described, including scanning of a test object at various scanner distances, shooting a test polygon from various scanner positions and building point cloud, repeatedly shooting the same area of the polygon to check the stability of the scanner. The data on the assessment of accuracy and analysis of research results are given. Fields of applying hand-held laser scanners, their advantages and disadvantages are identified.


Author(s):  
Jonna Nyman

Abstract Security shapes everyday life, but despite a growing literature on everyday security there is no consensus on the meaning of the “everyday.” At the same time, the research methods that dominate the field are designed to study elites and high politics. This paper does two things. First, it brings together and synthesizes the existing literature on everyday security to argue that we should think about the everyday life of security as constituted across three dimensions: space, practice, and affect. Thus, the paper adds conceptual clarity, demonstrating that the everyday life of security is multifaceted and exists in mundane spaces, routine practices, and affective/lived experiences. Second, it works through the methodological implications of a three-dimensional understanding of everyday security. In order to capture all three dimensions and the ways in which they interact, we need to explore different methods. The paper offers one such method, exploring the everyday life of security in contemporary China through a participatory photography project with six ordinary citizens in Beijing. The central contribution of the paper is capturing—conceptually and methodologically—all three dimensions, in order to develop our understanding of the everyday life of security.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1510 ◽  
Author(s):  
Mohammad Ehsan Taghavizadeh Yazdi ◽  
Simin Nazarnezhad ◽  
Seyed Hadi Mousavi ◽  
Mohammad Sadegh Amiri ◽  
Majid Darroudi ◽  
...  

The use of naturally occurring materials in biomedicine has been increasingly attracting the researchers’ interest and, in this regard, gum tragacanth (GT) is recently showing great promise as a therapeutic substance in tissue engineering and regenerative medicine. As a polysaccharide, GT can be easily extracted from the stems and branches of various species of Astragalus. This anionic polymer is known to be a biodegradable, non-allergenic, non-toxic, and non-carcinogenic material. The stability against microbial, heat and acid degradation has made GT an attractive material not only in industrial settings (e.g., food packaging) but also in biomedical approaches (e.g., drug delivery). Over time, GT has been shown to be a useful reagent in the formation and stabilization of metal nanoparticles in the context of green chemistry. With the advent of tissue engineering, GT has also been utilized for the fabrication of three-dimensional (3D) scaffolds applied for both hard and soft tissue healing strategies. However, more research is needed for defining GT applicability in the future of biomedical engineering. On this object, the present review aims to provide a state-of-the-art overview of GT in biomedicine and tries to open new horizons in the field based on its inherent characteristics.


Sign in / Sign up

Export Citation Format

Share Document