scholarly journals PENGARUH WAKTU PERENDAMAN DALAM AIR, KADAR PATI DAN KADAR LIGNIN TERHADAP SIFAT FISIK DAN MEKANIK BAMBU AMPEL (Bambusa vulgaris Schard)

2018 ◽  
Vol 7 (1) ◽  
pp. 39
Author(s):  
Abdurachman Abdurachman ◽  
Agus Ismanto

The effect of immersion time in the water, starch and lignin content physical and mechanical properties of Ampel bamboo (Bambusa vulgaris Schard)The studied effect of immersion time in the water on physical and mechanical properties of ampel bamboo had been studied  at the Forest Products Research and Development Center Bogor. Round Bamboo of ampel species (Bambusa vulgaris Schard) a length of 50 cm was immersed in running water, stagnant and in the sludge for 7, 14, 21 and 28 days. Then the changes in starch and lignin content, physical and mechanical properties were evaluated. The physical properties studied were evaluated density and moisture content, while mechanical properties were bending and parallel tensile strength of fiber. The results showed that the media and immersion time significantly affect the density and moisture content, but did not affect the physical and mechanical properties. Increased starch content in a variety of treatments, especially on immersion in water, otherwise the lignin content decreases, causing a decrease in the nature of Modulus of Elasticity (MOE) and Modulus of Rupture (MOR). Immersion in stagnant water better than by soaking in the mud and in running water.Keywords: Bambusa vulgaris Schard,  media, immersion time, physical and mechanical properties ABSTRAKPenelitian pengaruh waktu perendaman dalam air terhadap sifat fisik dan mekanik bambu ampel (bambusa vulgaris) telah dilakukan di Pusat Penelitian dan Pengembangan Hasil Hutan Bogor. Bambu bulat berukuran panjang 50 cm direndam dalam air mengalir, tergenang dan lumpur selama 7, 14, 21 dan 28 hari, kemudian diamati perubahan kadar pati,diuji sifat fisik dan mekaniknya. Sifat fisik yang diteliti adalah kerapatan dan kadar air, sedangkan sifat mekanik adalah keteguhan lentur dan tarik sejajar serat. Hasil penelitian menunjukkan bahwa media dan waktu rendaman berpengaruh nyata terhadap kerapatan dan kadar air, tetapi tidak berpengaruh terhadap sifat fisis dan mekanis bambu yang diteliti. Kadar pati meningkat pada berbagai perlakuan terutama pada rendaman dalam air mengalir, sebaliknya kandungan lignin menurun sehingga menyebabkan penurunan sifat Modulus elastisitas (MOE) dan keteguhan lentur maksimum (MOR). Perendaman dalam air tergenang lebih baik dibandingkan dengan cara perendaman dalam lumpur maupun dalam air mengalir.Kata kunci : Bambusa vulgaris Schard, media, waktu perendaman, sifat fisis dan mekanis

2021 ◽  
Vol 6 (2) ◽  
pp. 57-61
Author(s):  
Mohamad Saiful Sulaiman ◽  
Sitti Fatimah Mhd. Ramle ◽  
Rokiah Hashim ◽  
Othman Sulaiman ◽  
Mohd Hazim Mohamad Amini ◽  
...  

Physical and mechanical properties of Bambusa vulgaris and Schizostachyum brachycladum wereinvestigated. The sample were classified into two different ages which are young and mature foreach culm of bamboo. The aim of this study to investigate the physical properties such as density,basic density, moisture content, water absorption and thickness swelling. Other than that, themechanical properties also help to determine their flexural test for modulus of rupture (MOR) andmodulus of elasticity (MOE). The method used to analyse physical and mechanical properties werefollowing the ISO standard. From this study, young Bambusa vulgaris has indicated the highercontent of moisture content, water absorption and thickness swelling with 67.66%, 2.69% and34.03%, respectively while mature Schizostachyum brachycladum has shown the higher value inbasic density, density, and flexural test for MOR and MOE with 876.33 kg/m3, 1084.49 kg/m3, 317.01 N/mm2 and 122986.18 N/mm2, respectively.


2019 ◽  
Vol 7 (1) ◽  
Author(s):  
. Erma ◽  
Fadiilah H Usman ◽  
. Muflihati

Physical and mechanical properties of wood is one of the basic properties that need to be known in the selection of wood, because the physical and mechanical properties of wood are not the same height on the stem. Increased wood demand gives the opportunity to use wood that is not yet known for its marketing, one of which is Salam wood (Syzygium polianthum (Wight) Walp). The purpose of this research was to determine the physical and mechanical properties of Salam wood based on the height of the stem so that Salam wood can be optimally utilized by testing based on Classification SNI – 5 PKKI 1961. Methods of making test and test examples based on British Standard Methods No. 373-1957. The results showed that Salam wood has physical properties with an average  brown colour, the moisture content 3,13 % , density  0,58 kg/cm2 , Depreciation 2,59 %. Salam has mechanical properties with an average height position stem from base to tip with Modulus of Elastiscity (MOE)  97.701,54 , Modulus of Rupture (MOR) 659,18  and  Modulus Crushing  Streang 342,86 . Salam can be classified into strong class III and based on its properties and mechanics, it is suitable for use as a lightweight construction and furniture.Keywords: Density, depreciation, MCS, MOE, moisture content, MOR


2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Mayang Archila ◽  
Farah Diba ◽  
Dina Setyawati ◽  
. Nurhaida

The objective of this research is to evaluate the effect of the number of composite layers on the quality of the composite board from sago bark waste and plastic waste, and the number of composite layers that produce the best quality on composite board. The composite board is made with size 30 cm x 30 cm x 1 cm. The composition and division of the material was carried out manually with the polypropylene distribution divided into three parts: the front and rear respectively of 15%, and the center 70% of the plastic weight. Target density of composite boards was 0.7 g / cm3. The treatment used is based on the number of layers composing, which is 5 layers, 7 layers, 9 layers, 11 layers and 13 layers. After mixed the sago bark particle and waste of polypropylene, the materials then compressed with hot press at 180oC with pressure about ± 25 kg / cm2 for 10 minutes. The composite boards then tested the quality included physical and mechanical properties. Testing of physical and mechanical properties refers to JIS A 5908-2003 standard. Physical properties consist of density, moisture content, thickness swelling, and water absorption. Mechanical properties consist of modulus of rupture, modulus of elasticity, internal bonding, and modulus of screw holding strength. The study used a completely randomized design experiment consisting of 5 treatments and 3 replications. The results showed the average value of composite density was range between 0.6962 – 0.7896 g/cm3, the moisture content was range between 4.3388 % - 6.8066%, the thickness swelling was range between 8.2605% - 11.9615%, and water absorption was range between 17.2380% - 22.3867%. The average value of modulus of rupture was range between 60,0632 kg/cm2 – 64,4068 kg/cm2, the modulus of elasticity was range between 17935,1813g/cm2 – 32841,8278 kg/cm2, the internal bonding was range between 1,9268 kg/cm2  - 5,4119 kg/cm2, and the modulus of screw holding strength was range between 78,2530 kg/cm2 – 92,9677 kg/cm2. The composite board made from sago stem bark waste and polypropylene waste plastic with 13 layers treatment is the best composite board and fulfilled the JIS A 5908-2003 standard. Keywords: bark of sago, composite boards, layer of composite, polypropylenes plastic, waste


2012 ◽  
Vol 506 ◽  
pp. 607-610 ◽  
Author(s):  
N. Thongjun ◽  
Lerpong Jarupan ◽  
Chiravoot Pechyen

Oil palm frond pulp (OPF) was blended with activated carbon for the purpose of active packaging in this preliminary study. It was aimed to investigate the effect of in-situ activated carbon on physical and mechanical properties of the pulp handsheets made from OPF. Testing of property performances of the resulted handsheets included density, moisture content, thickness swelling, folding, tensile strength, %elongation, stiffness, and modulus of rupture. Ultimately, the intention is to use for prospected active packaging for fresh produce. OPF pulp was prepared by the kraft process. The pulp stock was mixed with different proportions of activated carbon (0, 10, 20, and 30% w/w). The results showed that an increased proportion of activated carbon decreased density and thickness selling, but had no effect on moisture content.


2021 ◽  
Vol 891 (1) ◽  
pp. 012007
Author(s):  
Y S Hadi ◽  
E N Herliyana ◽  
I M Sulastiningsih ◽  
E Basri ◽  
R Pari ◽  
...  

Abstract Jabon (Anthocephalus cadamba) laminas were impregnated with polystyrene and reached 21.2% polymer loading. The laminas were manufactured for three-layer glued laminated timber (glulam) using isocyanate glue with glue spread 280 g/m2 and cold-press process. For comparison purposes, untreated glulam as control and also solid wood were prepared. The physical-mechanical properties were evaluated according to the Japanese Agricultural Standard (JAS) 234-2003. The results showed that the color of glulam was not different from polystyrene glulam. The density of polystyrene glulam was higher than untreated glulam and solid wood, but the moisture content was lower than the other. The product kinds of solid wood, untreated glulam, and polystyrene glulam did not affect shear strength and modulus of rupture (MOR), while the modulus of elasticity (MOE) of untreated glulam and hardness of polystyrene glulam were the highest values and the other products were not different one each other. Both kinds of glulam fulfilled the Japanese standard in terms of moisture content, MOR, and delamination in hot water, but MOE and shear strength did not. Regarding its advantages, polystyrene glulam could be further developed using a higher wood density.


2018 ◽  
Vol 2 (6) ◽  
pp. 6-9
Author(s):  
Ros Syazmini Mohd Ghani ◽  

The study was carried out to determine the physical and mechanical properties of composite lumber made from cassava (Mahinot esculenta Crantz) and bamboo (Bambusa vulgaris) in different ratios which is 100% cassava with 0% bamboo, 75% cassava with 25% bamboo, 50% cassava with 50% bamboo, 25% cassava with 75% bamboo and 0% cassava with 100% bamboo. The tests samples for determining the strength properties were divided into two categories namely mechanical testing and physical testing. Basic density of the samples was carried out for physical testing. The lowest basic density was in samples with 100% cassava which is 0.49 g/cm3 and highest in samples with 100% bamboo which is 0.68 g/cm3 . Two tests for the mechanical testing are bending test and compression test. In bending test, modulus of elasticity (MOE) and modulus of rupture (MOR) were both highest for samples with 100% bamboo which the reading of MOE was 16794.03 N/mm2 and 122.52 N/mm2 for MOR. Similar to the bending test, compression test is the highest for the samples with 100% bamboo which are 65.58 N/mm2 . From statistical analysis, the basic density, static bending can compression strength give significant value at 95% confidence interval.


PERENNIAL ◽  
2008 ◽  
Vol 4 (1) ◽  
pp. 6
Author(s):  
Apri Heri Iswanto ◽  
Zahrial Coto ◽  
Kurniawansyah Effendy

The objective of this research is to research the effect of particle soaking to physical and mechanical properties particleboard that resulted. The best result of particleboard is particleboard with treatment of hot water soaking. From this result obtained average of physical properties of particleboard (i.e. density, moisture content, water absorption, and thickness swelling) are 0.7 g/cm3; 9.58%; 52.27%; 10.05%. While the result average of mechanical properties of particleboard (i.e. Modulus of Rupture, Modulus of Elasticity, Internal Bond and Screw Holding Power) are 118.79 kg/cm2; 8.909 kg/cm2; 1.85 kg/cm2; 28.40 kg. Key words: Soaking, bagasse, particleboard, physical and mechanical properties References


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 194 ◽  
Author(s):  
Mohammad Derikvand ◽  
Nathan Kotlarewski ◽  
Michael Lee ◽  
Hui Jiao ◽  
Gregory Nolan

The use of fast-growing plantation eucalypt (i.e., pulpwood eucalypt) in the construction of high-value structural products has received special attention from the timber industry in Australia and worldwide. There is still, however, a significant lack of knowledge regarding the physical and mechanical properties of the lumber from such plantation resources as they are mainly being managed to produce woodchips. In this study, the physical and mechanical properties of lumber from a 16-year-old pulpwood Eucalyptus nitens H.Deane & Maiden resource from the northeast of Tasmania, Australia was evaluated. The tests were conducted on 318 small wood samples obtained from different logs harvested from the study site. The tested mechanical properties included bending modulus of elasticity (10,377.7 MPa) and modulus of rupture (53 MPa), shear strength parallel (5.5 MPa) and perpendicular to the grain (8.5 MPa), compressive strength parallel (42.8 MPa) and perpendicular to the grain (4.1 MPa), tensile strength perpendicular to the grain (3.4 MPa), impact bending (23.6 J/cm2), cleavage (1.6 kN) and Janka hardness (23.2 MPa). Simple linear regression models were developed using density and moisture content to predict the mechanical properties. The variations in the moisture content after conventional kiln drying within randomly selected samples in each test treatment were not high enough to significantly influence the mechanical properties. A relatively high variation in the density values was observed that showed significant correlations with the changes in the mechanical properties. The presence of knots increased the shear strength both parallel and perpendicular to the grain and significantly decreased the tensile strength of the lumber. The results of this study created a profile of material properties for the pulpwood E. nitens lumber that can be used for numerical modelling of any potential structural product from such a plantation resource.


Nativa ◽  
2018 ◽  
Vol 6 (5) ◽  
pp. 537
Author(s):  
Claudio Gumane Francisco Juizo ◽  
Lineia Roberta Zen ◽  
Walderson Klitzke ◽  
Morgana Cristina França ◽  
Vitor Gonçalves Cremonez ◽  
...  

Este trabalho teve o objetivo de avaliar as propriedades tecnológicas da madeira de Eucalyptus sp tratada termicamente. Foram utilizadas amostras de madeira previamente secas até 12% de umidade, as quais foram separadas em cinco tratamentos, sendo um testemunha e quatro condições de exposição sob elevadas temperaturas e tempo, utilizando um forno cerâmico. As amostras foram separadas para avaliação das propriedades químicas, físicas e mecânicas. Nos resultados obtidos, observou-se decréscimo do teor de extrativos totais e holoceluloses, enquanto o teor de lignina de Klason aumentou com a temperatura e tempo de exposição. Da mesma forma, os tratamentos térmicos causaram acréscimo da perda de massa e da efetiva repelência de água, com redução da massa específica aparente, taxa de absorção de água e higroscopicidade da madeira. Na resistência das peças verificou-se aumento do módulo de elasticidade (MOE) e diminuição do modulo de ruptura (MOR) com aplicação de tratamentos térmicos. Na compressão paralela verificou-se aumento do MOE e MOR nas peças tratadas, servindo de parâmetros para possibilidades de uso estrutural da madeira até ao estado limite último. A tensão de Dureza Janka decresceu com aplicação dos tratamentos térmicos limitando a utilização dos mesmos em projetos que requerem maior resistência na superfície.Palavras-chave: Temperatura, Propriedades químicas, Propriedades físicas, Propriedades mecânicas. TECHNOLOGICAL PROPERTIES OF THE EUCALYPTUS WOOD UNDER THE HEAT TREATMENT  ABSTRACT:This work aimed to evaluate the technological properties of the heat treated wood of Eucalyptus sp. Were used wood samples Pre-dried up to 12% of moisture, which were separated into five treatments, one control and four diferente exposure conditions under high temperatures and time using a ceramic kiln. The samples were separated for evaluation of chemical, physical and mechanical properties. In the obtained results there was a decrease in total extractive and holocelluloses contents, while the Klason lignin content increased with the temperature and exposure times. In the same way, the heat treatments caused an increase of the mass loss and the effective water repellency with reduction of the apparent specific gravity, rate of water absorption and hygroscopicity of the wood. In the resistance of the pieces, the modulus of elasticity (MOE) was increased and the modulus of rupture (MOR) was reduced under the heat treatments. In the Parallel compression was verified increasing of MOE and MOR of the heat treated samples, serving as parameters for possibilities of structural use of the wood up to the last limit condition. The Janka hardness tensile decreased with the application of heat treatments, limiting the use of the wood in projects that require higher surface resistance.Keywords: temperature, chemical properties, physical properties, mechanical properties.


2014 ◽  
Vol 1051 ◽  
pp. 273-277
Author(s):  
Chun Gui Du ◽  
Jian Gang Song

This paper presents a study on the different fire retardant treatment technologies influence on the physical and mechanical properties of bamboo particleboard. The results showed: the properties of bamboo particleboard would change with changing of fire retardant treatment technology; among them the treated technology of fire retardant spraying after resin blending had larger changed; compared with non-fire retardant bamboo particleboard, the density and moisture content (MC) and 2h thickness swell (2h TS) of fire retardant bamboo particleboard had a little improved, and their internal bond (IB) and modulus of rupture (MOR) and modulus of elasticity (MOE) had slightly reduced.


Sign in / Sign up

Export Citation Format

Share Document