scholarly journals The Impact of Changes in Exhaust Temperature on the Power Output and Heat Rate of a Gas Turbine with a Capacity of 238 MW

2021 ◽  
Vol 8 (2) ◽  
pp. 96
Author(s):  
Hendra Budiono Putra Parapa'

The exhaust temperature parameter is one of the parameters that need to be considered in maintaining the performance of the gas turbine. The purpose of this study is to analyze the effect of changes in exhaust temperature on power output and heat rate. The data used is the actual design data of the M701 gas turbine. This data is used in building the model using the GateCycle software. The modeling simulation results are then validated using the actual design data. To see the impact of changes in exhaust temperature, data from the latest gas turbine performance results are used. This study concludes that changes in exhaust temperature parameters of 1OC have an impact on changes in power output of 0.273% and heat rate of 0.047%.

Author(s):  
Maryam Besharati-Givi ◽  
Xianchang Li

The increase of power need raises the awareness of producing energy more efficiently. Gas turbine has been one of the important workhorses for power generation. The effects of parameters in design and operation on the power output and efficiency have been extensively studied. It is well-known that the gas turbine inlet temperature (TIT) needs to be high for high efficiency as well as power production. However, there are some material restrictions with high-temperature gas especially for the first row of blades. As a result blade cooling is needed to help balance between the high TIT and the material limitations. The increase of TIT is also limited by restriction of emissions. While the blade cooling can allow a higher TIT and better turbine performance, there is also a penalty since the compressed air used for cooling is removed from the combustion process. Therefore, an optimal cooling flow may exist for the overall efficiency and net power output. In this paper the relationship between the TIT and amount of cooling air is studied. The TIT increase due to blade cooling is considered as a function of cooling air flow as well as cooling effectiveness. In another word, the increase of the TIT is limited while the cooling air can be increased continuously. Based on the relationship proposed the impact of blade cooling on the gas turbine performance is investigated. Compared to the simple cycle case without cooling, the blade cooling can increase the efficiency from 28.8 to 34.0% and the net power from 105 to 208 MW. Cases with different operation conditions such as pressure ratios as well as design aspects with regeneration are considered. Aspen plus software is used to simulate the cycles.


Author(s):  
Walter Jury ◽  
David E. Searles

Advanced gas turbine designs require revisiting the optimization process to provide maximum competitiveness of new generating installations. This counts specifically for those designs created for combined cycle applications. Gas turbine performance and its associated exhaust temperature has been increasing at a rapid pace over recent years. The conventional method of selecting a GT based upon price and performance, and then designing a complex bottoming cycle does not provide sufficient solutions for power generation in an open access marketplace. The optimal solution takes into account the interrelation between the GT and WS cycle, leading to a more efficient, simplified and flexible power plant. This analysis shows how different levels of GT exhaust energy lead to different optimum cycle solutions. It shows, as postulated above, that considering the WS cycle demands in gas turbine design leads to a simpler cycle with inherent advantages in efficiency, reliability and flexibility.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Filippo Rubechini ◽  
Michele Marconcini ◽  
Andrea Arnone ◽  
Massimiliano Maritano ◽  
Stefano Cecchi

In this work a numerical investigation of a four stage heavy-duty gas turbine is presented. Fully three-dimensional, multistage, Navier-Stokes analyses are carried out to predict the overall turbine performance. Coolant injections, cavity purge flows, and leakage flows are included in the turbine modeling by means of suitable wall boundary conditions. The main objective is the evaluation of the impact of gas modeling on the prediction of the stage and turbine performance parameters. To this end, four different gas models were used: three models are based on the perfect gas assumption with different values of constant cp, and the fourth is a real gas model which accounts for thermodynamic gas properties variations with temperature and mean fuel∕air ratio distribution in the through-flow direction. For the real gas computations, a numerical model is used which is based on the use of gas property tables, and exploits a local fitting of gas data to compute thermodynamic properties. Experimental measurements are available for comparison purposes in terms of static pressure values at the inlet∕outlet of each row and total temperature at the turbine exit.


Author(s):  
R. K. Bhargava ◽  
C. B. Meher-Homji ◽  
M. A. Chaker ◽  
M. Bianchi ◽  
F. Melino ◽  
...  

The strong influence of ambient temperature on the output and heat rate on a gas turbine has popularized the application of inlet fogging and overspray for power augmentation. One of the main advantages of overspray fogging is that it enhances power output as a result of decrease in compression work associated with the continuous evaporation of water within the compressor due to fog intercooling. A comprehensive review on the current understanding of the analytical and experimental aspects of overspray fogging technology as applied to gas turbines is presented in this paper.


Author(s):  
Brian J. Kitchen ◽  
Jerry A. Ebeling

The relative potential of combustion turbines for capacity enhancement by inlet air cooling was examined. A new inlet air cooling effectiveness factor was developed for this purpose. It was found that combustion turbines vary significantly in terms of inlet air cooling effectiveness. Of the combustion turbines presented in this paper, the best-ranked combustion turbine had an effectiveness factor of 0.48 while the lowest-ranked turbine had a factor of 1.35. No strong correlation was found between the inlet air cooling effectiveness factor and the ISO turbine performance parameters of heat rate, pressure ratio, exhaust temperature, and the ratio of inlet air mass flow rate to power output.


Author(s):  
S. Can Gülen

Duct firing in the heat recovery steam generator (HRSG) of a gas turbine combined cycle power plant is a commonly used method to increase output on hot summer days when gas turbine airflow and power output lapse significantly. The aim is to generate maximum possible power output when it is most needed (and, thus, more profitable) at the expense of power plant heat rate. In this paper, using fundamental thermodynamic arguments and detailed heat and mass balance simulations, it will be shown that, under certain boundary conditions, duct firing in the HRSG can be a facilitator of efficiency improvement as well. When combined with highly-efficient aeroderivative gas turbines with high cycle pressure ratios and concomitantly low exhaust temperatures, duct firing can be utilized for small but efficient combined cycle power plant designs as well as more efficient hot-day power augmentation. This opens the door to efficient and agile fossil fuel-fired power generation opportunities to support variable renewable generation.


Author(s):  
Vishal Sethi ◽  
Fulvio Diara ◽  
Sina Atabak ◽  
Anthony Jackson ◽  
Arjun Bala ◽  
...  

This paper describes the structure of an advanced fluid thermodynamic model which has been developed for a novel advanced gas turbine simulation environment called PROOSIS. PROOSIS (PRopulsion Object Oriented SImulation Software) is part of the VIVACE-ECP (Value Improvement through a Virtual Aeronautical Collaborative Enterprise - European Cycle Programme) project. The main objective of the paper is to determine a way to achieve an accurate, robust and reliable fluid model. The results obtained demonstrate that accurate modeling of the working fluid is essential to avoid convergence problems of the thermodynamic functions thereby increasing the accuracy of calculated fluid properties. Additionally, the impact of accurately modeling fuel thermodynamic properties, at the point of the injection, is discussed.


Author(s):  
Walter I. Serbetci

As the second study in a sequence of studies conducted on the optimization of combined cycle plants [Ref. 1], this paper presents the effects of fuel gas heating on plant performance and plant economics for various 1×1×1 configurations. First, the theoretical background is presented to explain the effects of fuel gas heating on combustion turbine efficiency and on the overall efficiency of the combined cycle plant. Then, *CycleDeck-Performance Estimator™ and *GateCycle™ computer codes were used to investigate the impact of fuel gas heating on various 1×1×1 configurations. The configurations studied here are: 1) GE CC107FA with three pressure/reheat HRSG and General Electric PG7241(FA) gas turbine (Fig. 1), 2) GE CC106FA with three pressure/reheat HRSG and General Electric PG6101(FA) gas turbine and, 3) GE CC 107EA with three pressure/non-reheat HRSG with General Electric PG7121(EA) gas turbine. In all calculations, natural gas with high methane percentage is used as a typical fuel gas. Hot water from the outlet of IP economizer is used to heat the fuel gas from its supply temperature of 80 °F (27 °C). Heating the fuel gas to target temperatures of 150 °F, 200 °F, 250° F, 300 °F, 350 °F, 375 °F, 400 °F and 425 °F ( 66, 93, 121, 149, 177, 191, 204 and 218 °C), the combustion turbine power output, the combustion turbine heat rate and the plant power output and the corresponding heat rate are determined for each target fuel temperature. For each configuration, the heat transfer surface required to heat the fuel gas to the given target temperatures are also determined and budgetary price quotes are obtained for the fuel gas heaters. As expected, as the fuel temperature is increased, the overall efficiency (therefore the heat rate) improved, however at the expense of some small power output loss. Factoring in the fuel cost savings, the opportunity cost of the power lost, the cost of the various size performance heaters and the incremental auxiliary power consumption (if any), a cost-benefit analysis is carried out and the economically optimum fuel temperature and the corresponding performance heater size are determined for each 1×1×1 configuration.


2014 ◽  
Vol 1078 ◽  
pp. 280-285 ◽  
Author(s):  
Tao Sun ◽  
Bo Wan ◽  
Chang Jiang Sun ◽  
Zheng Wei Ma

With the continuous development of infrared-guided weapons, the survival of ship at sea faces increasingly challenges especially high-risk waters. The ship gas turbine exhaust ejector is the core component parts, charged with the task of reducing or even eliminating the infrared radiation signal of ship gas turbine exhaust systems. In the designing of exhaust ejector, structure forms of nozzle have a big influence on its ejector effect. Making a rational design of nozzle, which working in a narrow space, to reduce the exhaust temperature effectively while minimizing the impact of flow of gas turbine body has always been a focus and difficulty. In this article, a multistage ejector is designed by adding a second-stage ejector section based on an independent design of single-stage ejector.


2014 ◽  
Vol 136 (10) ◽  
Author(s):  
Uyioghosa Igie ◽  
Pericles Pilidis ◽  
Dimitrios Fouflias ◽  
Kenneth Ramsden ◽  
Panagiotis Laskaridis

Industrial gas turbines are susceptible to compressor fouling, which is the deposition and accretion of airborne particles or contaminants on the compressor blades. This paper demonstrates the blade aerodynamic effects of fouling through experimental compressor cascade tests and the accompanied engine performance degradation using turbomatch, an in-house gas turbine performance software. Similarly, on-line compressor washing is implemented taking into account typical operating conditions comparable with industry high pressure washing. The fouling study shows the changes in the individual stage maps of the compressor in this condition, the impact of degradation during part-load, influence of control variables, and the identification of key parameters to ascertain fouling levels. Applying demineralized water for 10 min, with a liquid-to-air ratio of 0.2%, the aerodynamic performance of the blade is shown to improve, however most of the cleaning effect occurred in the first 5 min. The most effectively washed part of the blade was the pressure side, in which most of the particles deposited during the accelerated fouling. The simulation of fouled and washed engine conditions indicates 30% recovery of the lost power due to washing.


Sign in / Sign up

Export Citation Format

Share Document