ORE CONCENTRATIONS OF METALS IN NAPHTHIDES OF HYPERGENESIS ZONE: ASSESSMENT AND ENVIRONMENTAL ASPECT

Author(s):  
Svetlana Punanova

The study examines the formation of secondary-altered crude oils associated with the processes of modern or ancient hypergenesis. As a result of geological processes during intense upward movement of the earth's crust, oil undergoes physical weathering, inorganic oxidation, washing out with water, biodegradation and sulfurization, and turn into heavy oils and hard bitumen. In zones of hypergenesis, the loss of light fractions occurs and the absolute concentration of trace elements (TE) associated with resinous-asphaltene components, such as V, Ni, Co, Mo, Cr, Cu, etc. sharply increases. In addition, oils absorb elements of variable valence (V, Fe, U) from low-salinity stratal waters. As a result of experimental studies on the interaction of oils with low mineralization waters, which are characteristic of hypergenesis zones, leaching of some elements (e.g., Zn) from oils and absorption of others from contacting waters (for example, concentrations of newly-formed organometallic compounds V and Fe increased by 1.3-12 times) were found. The author utilized the method of neutron-activation analysis to study the content of TE in oils and natural bitumens of the Volga-Ural, Timan-Pechora, Kazakhstan, Tajikistan, and etc. Ore-level concentration values were found, for example: 180-1162 ppm for V and up to 100 ppm for Ni in the oils of the Melekess depression in Tatarstan, and 940 ppm for V and 130 ppm for Ni in the oils of Kazakhstan deposits. Classification of oils by the content of “biogenic” elements V, Ni, Fe and by physical and chemical properties revealed significant differences of hypergene-altered oils in the general cycle of genesis of naphthides. Deposits of secondarily-altered oils are found in a wide stratigraphic range in oil and gas basins of various geostructural types in traps of the combined morphology – lithologically and tectonically shielded. During the development of oil deposits that contain high concentrations of TE, it is necessary to take into account ecological aspects. The environmental aspect is due to the fact that many metals contained in oils – V, Ni, Cd, As, Hg, U, etc. belong to highly toxic compound chemicals.

Author(s):  
Sara LIFSHITS

ABSTRACT Hydrocarbon migration mechanism into a reservoir is one of the most controversial in oil and gas geology. The research aimed to study the effect of supercritical carbon dioxide (СО2) on the permeability of sedimentary rocks (carbonates, argillite, oil shale), which was assessed by the yield of chloroform extracts and gas permeability (carbonate, argillite) before and after the treatment of rocks with supercritical СО2. An increase in the permeability of dense potentially oil-source rocks has been noted, which is explained by the dissolution of carbonates to bicarbonates due to the high chemical activity of supercritical СО2 and water dissolved in it. Similarly, in geological processes, the introduction of deep supercritical fluid into sedimentary rocks can increase the permeability and, possibly, the porosity of rocks, which will facilitate the primary migration of hydrocarbons and improve the reservoir properties of the rocks. The considered mechanism of hydrocarbon migration in the flow of deep supercritical fluid makes it possible to revise the time and duration of the formation of gas–oil deposits decreasingly, as well as to explain features in the formation of various sources of hydrocarbons and observed inflow of oil into operating and exhausted wells.


Clay Minerals ◽  
2011 ◽  
Vol 46 (1) ◽  
pp. 1-24 ◽  
Author(s):  
P. H. Nadeau

AbstractThe impact of diagenetic processes on petroleum entrapment and recovery efficiency has focused the vast majority of the world's conventional oil and gas resources into relatively narrow thermal intervals, which we call Earth's energy “Golden Zone”. Two key mineralogical research breakthroughs, mainly from the North Sea, underpinned this discovery. The first is the fundamental particle theory of clay mineralogy, which showed the importance of dissolution/precipitation mechanisms in the formation of diagenetic illitic clays with increasing depth and temperature. The second is the surface area precipitation-rate-controlled models for the formation of diagenetic cements, primarily quartz, in reservoirs. Understanding the impacts of these geological processes on permeability evolution, porosity loss, overpressure development, and fluid migration in the subsurface, lead to the realization that exploration and production risks are exponential functions of reservoir temperature. Global compilations of oil/gas reserves relative to reservoir temperature, including the US Gulf Coast, have verified the “Golden Zone” concept, as well as stimulated further research to determine in greater detail the geological/mineralogical controls on petroleum migration and entrapment efficiency within the Earth's sedimentary basins.


Author(s):  
S.V. Matsenko ◽  
◽  
V.M. Minko ◽  
A.A. Koshelev ◽  
V.Yu. Piven ◽  
...  

Violation of industrial safety rules during the operation of offshore facilities for the production, storage and transportation of the hydrocarbon raw materials leads in the most cases to pollution of the marine environment with oil and its components. The works on localization and elimination of such pollution are carried out with the help of vessels of the technical support fleet and booms. When developing oil spill response plans at such facilities, a calculated determination of the technical characteristics of vessels and booms is required that are sufficient to carry out the planned activities. The basic design principles for determining the towing capacity of the technical fleet vessels involved in the localization and elimination of oil and oil product spills by trawling methods are given in the article. The calculation is based on theoretical studies performed by the authors of the physical processes occurring during the movement of objects of a mobile trawling order in the sea area. The results obtained during the course of theoretical studies were confirmed by the experimental studies carried out by the authors personally using the real pieces of equipment in the actual development of tasks for training spill containment by trawling. As a result, the empirical dependencies were obtained and experimentally confirmed, which can be used to calculate technical characteristics of the ships as part of the mobile orders and anchor systems as part of stationary orders intended for the localization and elimination of oil pollution. These results can be used, among other things, for the calculated substantiation of the technical characteristics of the technical fleet vessels designed to ensure safety of the offshore facilities for production, storage, and transportation of the hydrocarbon raw materials.


2020 ◽  
pp. 21-26
Author(s):  
E.H. Ahmadov ◽  

The paper studies the reduction rate of gas production in the wells of Bulla-deniz field drilled to VIII horizon. With this purpose, geological (reservoir properties, oil-gas saturation, net thickness, formation pressure and temperature, formation heterogeneity, multi-layer system, tectonic faults, physical-chemical properties of oil and gas etc.) and technological (well structure, measuring and transportation system, well operation regime, drilling technology etc.) conditions of formation were analyzed and the well model of VII and VIII horizons of Bulla-deniz field using these geological and technical parameters developed as well. For the estimation of impact of geological and technical aspects on production, sensitivity analysis was carried out on the models. The suggestions for elaboration of uncertainty of geological and technical parameters affecting production dynamics were developed. To reveal the reasons for production differences of the wells, it was proposed to install borehole manometers, to obtain the data on pressure recovery curves, drainage area, skin-effect impact, permeability and to develop a study plan of bottomhole zone with acid.


2021 ◽  
Author(s):  
Bagus Muliadi Nasution ◽  
Andrew Yonathan ◽  
Muthi Abdillah ◽  
Wang Zhen

Abstract Organic acid has been widely applied for inorganic scale treatment in oil and gas industry including well stimulation and scale inhibitor. Thanks to its low corrosivity and slower reaction rate with rock, organic acid is considered to offer better performance comparing to strong acid - Hydrochloric Acid (HCl). Yet, proper treatment requires vigorous analysis and experiment in order to meet foremost expectations. Besides, mistreatment of scale could result in formation damage including clay precipitation. Pre-treatment experiments were performed on Zelda field at South East Sumatera block, that has faced with scale problem for ages. Water sample was taken from flowing Zelda A-08 well to be analyzed for mineral's saturation level. Scale was extracted from three sources including tubing, sand bailer, and Electrical Submersible Pump (ESP) of Zelda A-08. Those scale were treated in X-Ray Powder Diffraction (XRD) for mineral composition, and solubility test that utilized two types of acid system - formic acid (HCOOH) and hydrochloric acid (HCl) for comparison. Anti-swelling test and corrosion test were performed to examine the effectiveness of clay stabilizer and corrosion inhibitor. As for carbonate analysis, both formic acid 9% and HCl 15% have comparable solubility (98.17% vs 98% for tubing's scale, 91.86% vs 82.79% for ESP's scale, and 70.30% vs 68.07% for sand bailer's scale). Yet, longer reaction is carried out by formic acid 9% (1 hour) comparing to HCl 15% (18 minutes). For silicate analysis, HF-formic acid provided the higher solubility than HF-HCl (8.34% vs 5.67% for ESP's scale and 30.48% vs 25.68% for sand bailer's scale). On anti-swelling test, by reducing swelling tendency up to 62.6%, it proves that examined clay stabilizer works perfectly against swelling potential of clay, despite of high swelling tendency of sand bailer's scale (25.8%). On corrosion test, adding on corrosion inhibitor (pyridine-based) into solution results in regular HCl 15% has corrosion rate 26.279 g/m2.h which is much higher (300%) than HF-HCl (7.977 g/m2.h) and HF-formic acid (8.229 g/m2.h). Based on pre-treatment test, formic acid 9% together with examined corrosion inhibitor and clay stabilizer, can be used as an alternative to regular HCl 15% for stimulation purpose where more areas will be covered that previously left unreachable by regular acid 15%. In addition, potentially more effective squeezed scale inhibitor using organic acid can also be achieved by performing further experiments. The method presented in this paper for pre-treatment experimental studies of organic acid can provide engineers with intensive guide to meet the best result of organic acid treatment.


2021 ◽  
Author(s):  
Khidir Mansum Ibragimov ◽  
Nahide Ismat Huseinova ◽  
Aliabas Alipasha Gadzhiev

Abstract For controlling the oil field development proposed an economically efficient express calculation and visualization method of the hydrodynamic parameters current values distribution in the productive formation. The presented report shows the results of applying this technique for determining the injected water propagation direction into the productive formation (X horizon) at the «Neft Dashlary» field. Based on the calculated results, the current distribution of the injected water was visualized in the selected section of the formation. High accuracy of the calculation was confirmed by comparing obtained results with the results of a simultaneous tracer study conducted in the field conditions. During tracer studies it was tested a new tracer material, more effective than its analogs. According to laboratory and experimental studies, the addition of 0.003% of this indicator substance to the volume of injected water is the optimal amount for its recognition in the well's product. At the allocated area of the "Neft Dashlari" field, the benefits from the use of the calculation method amounted to 62.9 thousand manats. Based on the obtained satisfying results of the new method for calculating hydrodynamic parameters and the use of a tracer indicator application at the «Neft Dashlary» oilfield, it is recommended to apply these developments in other oil and gas fields for mass diagnostic of the reservoir fluid distribution in a selected area of productive formations.


2019 ◽  
pp. 100-107
Author(s):  
M. A. Lur’e

Comparison of elemental compositions of oil, coal and biomaterial has shown that a source of oil and gas systems and coal is mainly not biomass, but the deep abiogenic hightemperature fluids representing a mixture of light hydrocarbon, sulfur, metal-containing structures, etc. In the course of the fluids movement towards the Earth’s surface, hydrocarbon under catalytic action of sulfur and metals undergoes polycondensation transformations to afford hydrocarbons of various types and molecular mass, sulfur- and organometallic compounds. Formation of a hydrocarbon system depends on a structure of the fluid.


2018 ◽  
Vol 7 (1) ◽  
pp. 37 ◽  
Author(s):  
Yuli Panca Asmara

Hydrogen sulfide (H2S) is the most dangerous element which exists in oil and gas reservoir. H2S acidifies water which causes pitting corrosion to carbon steel pipelines. Corrosion reaction will increase fast when it combines with oxygen and carbon dioxide (CO2). Thus, they can significantly reduce service life of transportation pipelines and processing facilities in oil and gas industries. Understanding corrosion mechanism of H2S is crucial to study since many severe deterioration of carbon steels pipelines found in oil and gas industries facilities. To investigate H2S corrosion accurately, it requires studying physical, electrical and chemical properties of the environment. This paper concentrates, especially, on carbon steel corrosion caused by H2S gas. How this gas reacts with carbon steel in oil and gas reservoir is also discussed. This paper also reviews the developments of corrosion prediction software of H2S corrosion. The corrosion mechanism of H2S combined with CO2 gas is also in focused. 


2021 ◽  
Author(s):  
Guillem Subiela ◽  
Jordi Peña ◽  
Fus Micheo ◽  
Miquel Vilà

<p>Anthropization is the transformation that human actions exert on the environment. Artificial interventions modify the morphology of the ground and affect physical and chemical properties of natural terrain. Therefore, providing information on the distribution of artificial ground throughout the territory is necessary for land management, development and sustainability. Despite the effects of anthropization, from a geological approach, the systematic characterization of anthropic ground on a regional scale is scarcely developed in Catalonia.</p><p>In the last decade, one of the lines of work of Institut Cartogràfic i Geològic de Catalunya (the Catalan geological survey organisation) has been the development of the project Geoanthropic map of Catalonia, which incorporate information of active geological processes and artificial ground. Up to now, the activity in this project has broadly consisted of publishing several map sheets of 1:25.000 scale from different areas of Catalonia (5.000 km<sup>2</sup> from 32.108,2 km<sup>2</sup>). Recently, in the framework of this project, it is proposed to refocus with the purpose of ​​providing information on these two themes from all over the territory. In this process, in relation to artificial interventions, an analysis has been carried out to determine which anthropic terrains and related information can be obtained for its usefulness in a systematic way in the medium term.</p><p>In this analysis, firstly, the available reference information sources have been established from which information on anthropic lands in Catalonia can be extracted. Basically, these documents are topographic maps, geothematic maps, land use map, digital elevation models and other historical cartographic documents. Much of the existing information in these sources must be redirected to a more geological approach so that it can be used to address aspects related to geotechnics, natural hazards, soil pollution and other environmental concerns.</p><p>Secondly, based on data analysis, a series of certain anthropic lands have been evaluated which can be captured on a systematic identification at regional scale. Thereby, the following anthropogenic terrains have been established: built-up areas, agricultural areas, sealed ground, urban compacity, worked grounds (e.g., related to mineral excavations and transport infrastructures), engineered embankments, infilled excavations and other more singular anthropogenic deposits. Therefore, from a geological perspective, it will be feasible to identify and map these anthropic lands and provide this information throughout the Catalan territory in the medium term.</p><p>Bearing in mind all the above, the presentation will consist of this general analysis and the considerations that have been extracted regarding this. In addition, the preliminary results of the systematically characterized artificial ground will be shown.</p>


Sign in / Sign up

Export Citation Format

Share Document