Analytical Modeling for Water Chemistry Changes in River Bank Filtration Systems

2021 ◽  
Vol 18 (4) ◽  
pp. 125-133
Author(s):  
Shaymaa Mustafa ◽  
Mohamad Darwish

Riverbank filtration system is considered one of the economic and sustainable solutions to river water pollution especially in tropical countries such as Malaysia. In this work, an analytical model is developed to simulate the contaminant attenuation in riverbank filtration systems by using the separation of variables method. The basic aim of the model is to understand the role of microbial activity that occurs in riverbed sediments on reducing the concentration of the contaminant in the aquifer and changing the water characteristics. Graphically, it is found that the model can simulate the infiltration process of polluted river water effectively. Also, the analytical model results, as well as experimental data, show that nitrate (18.6 and 34.1 mg-NO3/L) and sulphate (20.9 – 22.1 mg-SO4/L) can be consumed by bacteria in the first 0.5 m of the aquifer, and reduced by more than 95% for both compounds. The model is applied for the first riverbank filtration system in Malaysia. Sensitivity analysis results highlight the importance of dissolved organic matter (DOM) concentration (ranged from 1.0 to 12.4 mg/L) for RBF efficacy in which a higher concentration of DOM leads to faster consumption of pollutants.

2017 ◽  
Vol 25 (7) ◽  
pp. 2185-2197 ◽  
Author(s):  
Maike Groeschke ◽  
Theresa Frommen ◽  
Thomas Taute ◽  
Michael Schneider

2020 ◽  
Vol 21 (2) ◽  
pp. 139
Author(s):  
Evarista Ristin Pujiindiyati ◽  
Bungkus Pratikno

Aquifer in river bank area is mostly susceptive toward pollution occurring in river. One of parameters to determine the interaction process between groundwater and river is a natural isotope of 222Rn. The significant difference of radon concentration in groundwater and river water can be utilized as a scientific basis for investigating groundwater infiltration in river bank. Those studied parameters are residence time and infiltration rate. The research using 222Rn had been conducted in shallow groundwater of Ciliwung river bank - South Jakarta during rainy and dry season. The range of 222Rn concentration in shallow groundwater monitored in dry season was between 666 - 2590 Bq/m3 which was higher than that of rainy season ranging at 440 to 1546 Bq/m3. Otherwise, concentration of 222Rn in river water could not be detected (its 222Rn concentration = 0 Bq/m3) due to its much lower concentration either rainy or dry season. During dry season monitoring, equilibration between groundwater and river water was reached at the distance approximately 98 - 140 m away from river side. Estimating residence time based on 222Rn concentration at nearest site from the river and at equlibration area was 4.2 days such that the infiltration rate from river water into aquifer might be 7.8 m/day.Keywords: 222Rn, groundwater, residence time, infiltration rate.


2018 ◽  
Vol 30 ◽  
pp. 01004
Author(s):  
Sylwia Kołaska ◽  
Joanna Jeż – Walkowiak ◽  
Zbysław Dymaczewski

The paper presents characteristics of Debina infiltration intake which provides water for Poznan and neighbouring communes. The evaluation of effectiveness of infiltration process has been done based on the quality parameters of river water and infiltration water. The analysed water quality parameters are as follows: temperature, iron, manganese, DOCKMnO4, TOC, turbidity, colour, dissolved oxygen, free carbon dioxide, conductivity, total hardness, carbonate hardness, pH, heavy metals, detergents and microorganisms. The paper also includes an assessment of the impact of flood conditions on the quality of infiltration water and operation of infiltration intake. In this part of the paper the following parameters were taken into account: iron, manganese, DOCKMnO4, TOC, turbidity, colour, dissolved oxygen, free carbon dioxide, conductivity, total hardness, the total number of microorganisms in 36°C (mesophilic), the total number of microorganisms in 22°C (psychrophilic), coli bacteria, Clostridium perfringens, Escherichia coli, Enterococci. Analysis of the effects of flood on infiltration process leads to the following conclusions: the deterioration of infiltration water quality was due to the deterioration of river water quality, substantial shortening of groundwater passage and partial disappearance of the aeration zone. The observed deterioration of infiltration water quality did not affect the treated water quality, produced at water treatment plant.


2020 ◽  
Vol 31 (1) ◽  
pp. 1-9
Author(s):  
MA Hanif ◽  
R Miah ◽  
MA Islam ◽  
S Marzia

This study was conducted to evaluate the Kapotaksha River water pollution status and its impacts on Human health and Environment. This study conducted a case study on four selected areas (Barakpur, Srirampur, Prbazar, and Gouranandapur) on the Kapotaksha river bank at Jhikargas Upazila. This river water pollution occurs by some natural process such as flood, storm, and natural biodegraded. But human activities are major reasons for the river water pollution. Industrialization, urbanization, domestic waste, sewage system, agrochemicals, etc are major causes for river water pollution. This more polluted water has an impact on human health and environment. This study was conducted to find out the polluted water due to various types of diseases such as scabies, asthma, dysentery and respiratory disease. Most of the people (49%) are affected by Scabies, 4% are affected by diarrhea, 5% are affected by dysentery, 25% of people are suffering from respiratory diseases and 4% are suffering from asthma and the polluted water pollutes soil by using the water in agriculture purpose answered by 20% respondents which is 100% of farmer respondents. If someone does not use this water can not affect soil answered by 80% of respondents. This river water becomes more polluted and harmful for human health and environment because this water hampered by the local colony, local trader, lack of proper management of sewage system, miss-use on the riverbank area for the dumping various solid waste on the river bank, chemical fertilizers, industries etc. At present now we cannot fulfill control this continuous river water pollution but we can minimize this problem and it would be positive for human health, others living organisms and Environment. Progressive Agriculture 31 (1): 1-9, 2020


Hydrology ◽  
2020 ◽  
Vol 7 (4) ◽  
pp. 96
Author(s):  
Rudy Rossetto ◽  
Alessio Barbagli ◽  
Giovanna De Filippis ◽  
Chiara Marchina ◽  
Thomas Vienken ◽  
...  

While ensuring adequate drinking water supply is increasingly being a worldwide challenging need, managed aquifer recharge (MAR) schemes may provide reliable solutions in order to guarantee safe and continuous supply of water. This is particularly true in riverbank filtration (RBF) schemes. Several studies aimed at addressing the treatment capabilities of such schemes, but induced aquifer recharge hydrodynamics from surface water bodies caused by pumping wells is seldom analysed and quantified. In this study, after presenting a detailed description of the Serchio River RBF site, we used a multidisciplinary approach entailing hydrodynamics, hydrochemical, and numerical modelling methods in order to evaluate the change in recharge from the Serchio river to the aquifer due to the building of the RBF infrastructures along the Serchio river (Lucca, Italy). In this way, we estimated the increase in aquifer recharge and the ratio of bank filtrate to ambient groundwater abstracted at such RBF scheme. Results highlight that in present conditions the main source of the RBF pumping wells is the Serchio River water and that the groundwater at the Sant’Alessio plain is mainly characterized by mixing between precipitation occurring in the higher part of the plain and the River water. Based on chemical mixing, a precautionary amount of abstracted Serchio River water is estimated to be on average 13.6 Mm3/year, which is 85% of the total amount of water abstracted in a year (~16 Mm3). RBF is a worldwide recognized MAR technique for supplying good quality and reliable amount of water. As in several cases and countries the induced recharge component is not duly acknowledged, the authors suggest including the term “induced” in the definition of this type of MAR technique (to become then IRBF). Thus, clear reference may be made to the fact that the bank filtration is not completely due to natural recharge, as in many cases of surface water/groundwater interactions, but it may be partly/almost all human-made.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1258 ◽  
Author(s):  
Rifaat Abdel Wahaab ◽  
Ahmed Salah ◽  
Thomas Grischek

To meet the increasing water demand and to provide safe drinking water in Egypt, the Holding Company for Water and Wastewater (HCWW) and its affiliated companies have started a program to develop riverbank filtration (RBF) sites in all Egyptian governorates. The paper gives an overview of water quality changes as a result of RBF, during the initial phase of operation at three sites in Upper Egypt, between 2015 and 2018. Significant changes were observed for chloride, sulfate, iron, manganese, ammonium, and in the bacterial counts. After the initiation of pumping from the RBF wells, it took 2 to 8 months until stable water quality was observed for the hydrochemical parameters and 2 to 14 months for the microbiological parameters. The results showed that RBF wells should be operated continuously, to maintain the advantage of lower Fe and Mn concentrations achieved by the wash-out effect in the aquifer zone, between the river bank and the RBF wells.


2011 ◽  
Vol 26 (5) ◽  
pp. 640-651 ◽  
Author(s):  
Frantisek Buzek ◽  
Renata Kadlecova ◽  
Ivana Jackova ◽  
Zdena Lnenickova

Sign in / Sign up

Export Citation Format

Share Document