scholarly journals Comparative Study of Hybrid Optimizations Technique for On-Chip Interconnect in Multimedia SoCs

2021 ◽  
Author(s):  
Jayshree ◽  
Gopalakrishnan Seetharaman ◽  
Debadatta Pati

This paper presents the design and analysis of on-chip interconnect architectures for real time Multimedia Systems-on-Chip (MSoC) targeting Internet of Things (IoT) applications. The interconnect architecture provides high flexibility in connection for hardware implementation of reconfigurable neural network. Due to technology’s miniaturization in ultra-deep submicron technology, the on-chip interconnect performance and power consumption become a bottle-neck. In this paper, the hybrid optimization technique is proposed to address these challenges using schmitt trigger as a repeater and tapering. Here, the proposed optimization technique is incorporated with a dedicated point to point based interconnection (PTP-BI) configuration. A comparative study with others without optimization technique (Model–I) shows the effectiveness of the proposed optimization technique (Model–II). The technology node scaling impacts are also analyzed for both techniques. Finally, the percentage reduction of latency and power consumption are evaluated in two different cases to observe the impacts of varying the interconnect length.

Author(s):  
Ng Yen Phing ◽  
M.N.Mohd Warip ◽  
Phaklen Ehkan ◽  
R Badlishah Ahmad ◽  
F.W. Zulkefli

<span>The size of the transistor has reached physical processor limitation in particular for traditional bus-based and point-to-point architecture in system-on-chip (SoC). Therefore, network-on-chip (NoC) was proposed as a solution. The performances required for the optimization of the NoC are low network latency, low power consumption, small area, and high throughput. However, recently the size of the NoC architecture has increased and the communication between cores to core become complicated. To overcome this disadvantages, topology plays an important role. In this paper, we reduce the number of the router in the 16 cores and 64 cores ring and mesh topologies by connected more numbers of node in each router. Result shows that reducing the number of the router in 64 cores ring topology outperforms the conventional topologies in term of area, power consumption, latency, and accepted packet rate. Reducing router in 64 cores ring topology decrease the average area, power consumption, latency, and increase the average accepted packet rate by 160.45%, 23.88%, 54.76%, and 223.88% over the 64 cores mesh, reducing router in mesh, ring, and cross-link mesh topologies.</span>


2004 ◽  
Vol 1 (1) ◽  
pp. 23-31
Author(s):  
A. García-Ortiz ◽  
T. Murgan ◽  
L. Indrusiak ◽  
L. Kabulepa ◽  
M. Glesner

As technology shrinks, the importance of the communication architecture in the overall system performance and power consumption increases dramatically. In this work, a framework is developed to estimate the consumption in point-to-point interconnect structures at high levels of abstraction. To model the effect of cross coupled capacitances, the spatial correlationbetween adjacent wire lines is considered together with the transition activity, and both are efficiently estimated using word-level statistics. Based on a set of increasing complexity stochastic data models, an analytical estimation procedure is proposed and validated with both synthetic and real data sets. Extensive bit level simulations have been carried out to show the accuracy of the proposed models.


2003 ◽  
Vol 1 ◽  
pp. 165-169 ◽  
Author(s):  
H. T. Feldkaemper ◽  
H. Blume ◽  
T. G. Noll

Abstract. One of the most challenging design issues for next generations of (mobile) communication systems is fulfilling the computational demands while finding an appropriate trade-off between flexibility and implementation aspects, especially power consumption. Flexibility of modern architectures is desirable, e.g. concerning adaptation to new standards and reduction of time-to-market of a new product. Typical target architectures for future communication systems include embedded FPGAs, dedicated macros as well as programmable digital signal and control oriented processor cores as each of these has its specific advantages. These will be integrated as a System-on-Chip (SoC). For such a heterogeneous architecture a design space exploration and an appropriate partitioning plays a crucial role. On the exemplary vehicle of a Viterbi decoder as frequently used in communication systems we show which costs in terms of ATE complexity arise implementing typical components on different types of architecture blocks. A factor of about seven orders of magnitude spans between a physically optimised implementation and an implementation on a programmable DSP kernel. An implementation on an embedded FPGA kernel is in between these two representing an attractive compromise with high flexibility and low power consumption. Extending this comparison to further components, it is shown quantitatively that the cost ratio between different implementation alternatives is closely related to the operation to be performed. This information is essential for the appropriate partitioning of heterogeneous systems.


Author(s):  
A. Ferrerón Labari ◽  
D. Suárez Gracia ◽  
V. Viñals Yúfera

In the last years, embedded systems have evolved so that they offer capabilities we could only find before in high performance systems. Portable devices already have multiprocessors on-chip (such as PowerPC 476FP or ARM Cortex A9 MP), usually multi-threaded, and a powerful multi-level cache memory hierarchy on-chip. As most of these systems are battery-powered, the power consumption becomes a critical issue. Achieving high performance and low power consumption is a high complexity challenge where some proposals have been already made. Suarez et al. proposed a new cache hierarchy on-chip, the LP-NUCA (Low Power NUCA), which is able to reduce the access latency taking advantage of NUCA (Non-Uniform Cache Architectures) properties. The key points are decoupling the functionality, and utilizing three specialized networks on-chip. This structure has been proved to be efficient for data hierarchies, achieving a good performance and reducing the energy consumption. On the other hand, instruction caches have different requirements and characteristics than data caches, contradicting the low-power embedded systems requirements, especially in SMT (simultaneous multi-threading) environments. We want to study the benefits of utilizing small tiled caches for the instruction hierarchy, so we propose a new design, ID-LP-NUCAs. Thus, we need to re-evaluate completely our previous design in terms of structure design, interconnection networks (including topologies, flow control and routing), content management (with special interest in hardware/software content allocation policies), and structure sharing. In CMP environments (chip multiprocessors) with parallel workloads, coherence plays an important role, and must be taken into consideration.


Nanophotonics ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 937-945
Author(s):  
Ruihuan Zhang ◽  
Yu He ◽  
Yong Zhang ◽  
Shaohua An ◽  
Qingming Zhu ◽  
...  

AbstractUltracompact and low-power-consumption optical switches are desired for high-performance telecommunication networks and data centers. Here, we demonstrate an on-chip power-efficient 2 × 2 thermo-optic switch unit by using a suspended photonic crystal nanobeam structure. A submilliwatt switching power of 0.15 mW is obtained with a tuning efficiency of 7.71 nm/mW in a compact footprint of 60 μm × 16 μm. The bandwidth of the switch is properly designed for a four-level pulse amplitude modulation signal with a 124 Gb/s raw data rate. To the best of our knowledge, the proposed switch is the most power-efficient resonator-based thermo-optic switch unit with the highest tuning efficiency and data ever reported.


Micromachines ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 54
Author(s):  
Yan-Li Zheng ◽  
Ting-Ting Song ◽  
Jun-Xiong Chai ◽  
Xiao-Ping Yang ◽  
Meng-Meng Yu ◽  
...  

The photoelectric hybrid network has been proposed to achieve the ultrahigh bandwidth, lower delay, and less power consumption for chip multiprocessor (CMP) systems. However, a large number of optical elements used in optical networks-on-chip (ONoCs) generate high transmission loss which will influence network performance severely and increase power consumption. In this paper, the Dijkstra algorithm is adopted to realize adaptive routing with minimum transmission loss of link and reduce the output power of the link transmitter in mesh-based ONoCs. The numerical simulation results demonstrate that the transmission loss of a link in optimized power control based on the Dijkstra algorithm could be maximally reduced compared with traditional power control based on the dimensional routing algorithm. Additionally, it has a greater advantage in saving the average output power of optical transmitter compared to the adaptive power control in previous studies, while the network size expands. With the aid of simulation software OPNET, the network performance simulations in an optimized network revealed that the end-to-end (ETE) latency and throughput are not vastly reduced in regard to a traditional network. Hence, the optimized power control proposed in this paper can greatly reduce the power consumption of s network without having a big impact on network performance.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 563
Author(s):  
Jorge Pérez-Bailón ◽  
Belén Calvo ◽  
Nicolás Medrano

This paper presents a new approach based on the use of a Current Steering (CS) technique for the design of fully integrated Gm–C Low Pass Filters (LPF) with sub-Hz to kHz tunable cut-off frequencies and an enhanced power-area-dynamic range trade-off. The proposed approach has been experimentally validated by two different first-order single-ended LPFs designed in a 0.18 µm CMOS technology powered by a 1.0 V single supply: a folded-OTA based LPF and a mirrored-OTA based LPF. The first one exhibits a constant power consumption of 180 nW at 100 nA bias current with an active area of 0.00135 mm2 and a tunable cutoff frequency that spans over 4 orders of magnitude (~100 mHz–152 Hz @ CL = 50 pF) preserving dynamic figures greater than 78 dB. The second one exhibits a power consumption of 1.75 µW at 500 nA with an active area of 0.0137 mm2 and a tunable cutoff frequency that spans over 5 orders of magnitude (~80 mHz–~1.2 kHz @ CL = 50 pF) preserving a dynamic range greater than 73 dB. Compared with previously reported filters, this proposal is a competitive solution while satisfying the low-voltage low-power on-chip constraints, becoming a preferable choice for general-purpose reconfigurable front-end sensor interfaces.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 346 ◽  
Author(s):  
Lili Shen ◽  
Ning Wu ◽  
Gaizhen Yan

By using through-silicon-vias (TSV), three dimension integration technology can stack large memory on the top of cores as a last-level on-chip cache (LLC) to reduce off-chip memory access and enhance system performance. However, the integration of more on-chip caches increases chip power density, which might lead to temperature-related issues in power consumption, reliability, cooling cost, and performance. An effective thermal management scheme is required to ensure the performance and reliability of the system. In this study, a fuzzy-based thermal management scheme (FBTM) is proposed that simultaneously considers cores and stacked caches. The proposed method combines a dynamic cache reconfiguration scheme with a fuzzy-based control policy in a temperature-aware manner. The dynamic cache reconfiguration scheme determines the size of the cache for the processor core according to the application that reaches a substantial amount of power consumption savings. The fuzzy-based control policy is used to change the frequency level of the processor core based on dynamic cache reconfiguration, a process which can further improve the system performance. Experiments show that, compared with other thermal management schemes, the proposed FBTM can achieve, on average, 3 degrees of reduction in temperature and a 41% reduction of leakage energy.


Sign in / Sign up

Export Citation Format

Share Document