scholarly journals Evaluation of Multiple Satellite-Based Precipitation Products for the Rainfall-Runoff Simulation over a Typical Catchment of Southwest China

2021 ◽  
Author(s):  
Shilei Chen ◽  
Qiang Wang ◽  
Hengfei Zhang ◽  
Changwen Li ◽  
Ling Zeng

Five non-real time satellite-based precipitation products (SPPs), including TMPA 3B42V7, CMORPH CRT, PERSIANN-CDR, GSMaP_MVK and GSMaP_Gauge, were evaluated over the Xijiang Basin. By driving XAJ model with each of the SPPs and gauge-based interpolation precipitation data to compare the hydrological responses at Wuzhou Station during the period of 2010–2017, this study also evaluated the applicability of these SPPs in rainfall-runoff simulation over the Xijaing Basin. The results showed that: (1) GSMaP_Gauge had highest accuracy, then are CMORPH CRT and TMPA 3B42V7, respectively, and finally are PERSIANN-CDR and GSMaP_MVK; (2) Among the five SPPs, CMORPH CRT, GSMaP_Gauge and TMPA-3B42 V7 have comparable performance in rainfall-runoff simulation, with NSE value lower than that generated by driving gauge-based interpolation precipitation and obviously higher than that of PERSIANN-CDR, and the uncorrected SPP, i.e., GSMaP_MVK, performs worst because of large systematic errors.

2014 ◽  
Vol 11 (1) ◽  
pp. 1169-1201 ◽  
Author(s):  
D. Kneis ◽  
C. Chatterjee ◽  
R. Singh

Abstract. The paper examines the quality of satellite-based precipitation estimates for the Lower Mahanadi River Basin (Eastern India). The considered data sets known as 3B42 and 3B42-RT (version 7/7A) are routinely produced by the tropical rainfall measuring mission (TRMM) from passive microwave and infrared recordings. While the 3B42-RT data are disseminated in real time, the gage-adjusted 3B42 data set is published with a delay of some months. The quality of the two products was assessed in a two-step procedure. First, the correspondence between the remotely sensed precipitation rates and rain gage data was evaluated at the sub-basin scale. Second, the quality of the rainfall estimates was assessed by analyzing their performance in the context of rainfall-runoff simulation. At sub-basin level (4000 to 16 000 km2) the satellite-based areal precipitation estimates were found to be moderately correlated with the gage-based counterparts (R2 of 0.64–0.74 for 3B42 and 0.59–0.72 for 3B42-RT). Significant discrepancies between TRMM data and ground observations were identified at high intensity levels. The rainfall depth derived from rain gage data is often not reflected by the TRMM estimates (hit rate < 0.6 for ground-based intensities > 80 mm day−1). At the same time, the remotely sensed rainfall rates frequently exceed the gage-based equivalents (false alarm ratios of 0.2–0.6). In addition, the real time product 3B42-RT was found to suffer from a spatially consistent negative bias. Since the regionalization of rain gage data is potentially associated with a number of errors, the above results are subject to uncertainty. Hence, a validation against independent information, such as stream flow, was essential. In this case study, the outcome of rainfall–runoff simulation experiments was consistent with the above-mentioned findings. The best fit between observed and simulated stream flow was obtained if rain gage data were used as model input (Nash–Sutcliffe Index of 0.76–0.88 at gages not affected by reservoir operation). This compares to the values of 0.71–0.78 for the gage-adjusted TRMM 3B42 data and 0.65–0.77 for the 3B42-RT real-time data. Whether the 3B42-RT data are useful in the context of operational runoff prediction in spite of the identified problems remains a question for further research.


2014 ◽  
Vol 18 (7) ◽  
pp. 2493-2502 ◽  
Author(s):  
D. Kneis ◽  
C. Chatterjee ◽  
R. Singh

Abstract. The paper examines the quality of satellite-based precipitation estimates for the lower Mahanadi River basin (eastern India). The considered data sets known as 3B42 and 3B42-RT (version 7/7A) are routinely produced by the tropical rainfall measuring mission (TRMM) from passive microwave and infrared recordings. While the 3B42-RT data are disseminated in real time, the gauge-adjusted 3B42 data set is published with a delay of some months. The quality of the two products was assessed in a two-step procedure. First, the correspondence between the remotely sensed precipitation rates and rain gauge data was evaluated at the sub-basin scale. Second, the quality of the rainfall estimates was assessed by analysing their performance in the context of rainfall–runoff simulation. At sub-basin level (4000 to 16 000 km2) the satellite-based areal precipitation estimates were found to be moderately correlated with the gauge-based counterparts (R2 of 0.64–0.74 for 3B42 and 0.59–0.72 for 3B42-RT). Significant discrepancies between TRMM data and ground observations were identified at high-intensity levels. The rainfall depth derived from rain gauge data is often not reflected by the TRMM estimates (hit rate < 0.6 for ground-based intensities > 80 mm day-1). At the same time, the remotely sensed rainfall rates frequently exceed the gauge-based equivalents (false alarm ratios of 0.2–0.6). In addition, the real-time product 3B42-RT was found to suffer from a spatially consistent negative bias. Since the regionalisation of rain gauge data is potentially associated with a number of errors, the above results are subject to uncertainty. Hence, a validation against independent information, such as stream flow, was essential. In this case study, the outcome of rainfall–runoff simulation experiments was consistent with the above-mentioned findings. The best fit between observed and simulated stream flow was obtained if rain gauge data were used as model input (Nash–Sutcliffe index of 0.76–0.88 at gauges not affected by reservoir operation). This compares to the values of 0.71–0.78 for the gauge-adjusted TRMM 3B42 data and 0.65–0.77 for the 3B42-RT real-time data. Whether the 3B42-RT data are useful in the context of operational runoff prediction in spite of the identified problems remains a question for further research.


1999 ◽  
Vol 39 (9) ◽  
pp. 201-207
Author(s):  
Andreas Cassar ◽  
Hans-Reinhard Verworn

Most of the existing rainfall runoff models for urban drainage systems have been designed for off-line calculations. With a design storm or a historical rain event and the model system the rainfall runoff processes are simulated, the faster the better. Since very recently, hydrodynamic models have been considered to be much too slow for real time applications. However, with the computing power of today - and even more so of tomorrow - very complex and detailed models may be run on-line and in real time. While the algorithms basically remain the same as for off-line simulations, problems concerning timing, data management and inter process communication have to be identified and solved. This paper describes the upgrading of the existing hydrodynamic rainfall runoff model HYSTEM/EXTRAN and the decision finding model INTL for real time performance, their implementation on a network of UNIX stations and the experiences from running them within an urban drainage real time control project. The main focus is not on what the models do but how they are put into action and made to run smoothly embedded in all the processes necessary in operational real time control.


1998 ◽  
Vol 37 (11) ◽  
pp. 155-162 ◽  
Author(s):  
B. Maul-Kötter ◽  
Th. Einfalt

Continuous raingauge measurements are an important input variable for detailed rainfall-runoff simulation. In North Rhine-Westphalia, more than 150 continuous raingauges are used for local hydrological design through the use of site specific rainfall runoff models. Requiring gap-free data, the State Environmental Agency developed methods to use a combination of daily measurements and neighbouring continuous measurements for filling periods of lacking data in a given raindata series. The objective of such a method is to obtain plausible data for water balance simulations. For more than 3500 station years the described methodology has been applied.


2013 ◽  
Vol 12 ◽  
pp. 52-58 ◽  
Author(s):  
Bijaya Tamrakar ◽  
Knut Alfredsen

Runoff is one of the major factors that govern the capacity of a hydropower project. Precipitation data are needed for estimation of runoff through runoff simulation using a hydrological model. Dense setup of rain gauge network in a mountainous topography is difficult and expensive. An alternative for this problem is the use of Satellite precipitation data with high spatial and temporal resolution. They have an additional advantage that they represent areal precipitation. But, these data should be duly evaluated before using them. In this study, Tropical Rainfall Measuring Mission (TRMM 3B42) precipitation data are evaluated using ground based precipitation stations over Nepal and fed in a rainfall-runoff model to estimate monthly discharge through four of the major basins of Nepal. A simple water balance model has been used, initially developed by Thornthwaite. Statistical parameters showed significant under-estimation of precipitation over major areas of Nepal. The results from the water balance model presented quiet a good estimation of discharge through basins with an average Nash Sutcliffe Efficiency (R²) value of 0.8. This implies that TRMM data can be used for runoff simulations over Nepal. The TRMM satellite data can be used during the planning stage of hydropower projects as well as on ungauged catchments. Hydro Nepal: Journal of Water, Energy and Environment Vol. 12, 2013, January Page: 52-58DOI: http://dx.doi.org/10.3126/hn.v12i0.9033 Uploaded Date : 10/29/2013


2016 ◽  
Vol 8 (1) ◽  
pp. 22-31 ◽  
Author(s):  
Sunil Ghaju ◽  
Knut Alfredsen

High spatial variability of precipitation over Nepal demands dense network of rain-gauge stations. But to set-up a dense rain gauge network is almost impossible due to mountainous topography of Nepal. Also the dense rain gauge network will be very expensive and some time impossible for timely maintenance. Satellite precipitation products are an alternative way to collect precipitation data with high temporal and spatial resolution over Nepal. In this study, the satellite precipitation products TRMM and GSMaP were analyzed. Precipitation was compared with ground based gauge precipitation in the Narayani basin, while the applicability of these rainfall products for runoff simulation were tested using the LANDPINE model for Trishuli basin which is a sub-basin within Narayani catchment. The Nash-Sutcliffe efficiency calculated for TRMM and GSMaP from point to pixel comparison is negative for most of stations. Also the estimation bias for both the products is negative indicating under estimation of precipitation by satellite products, with least under estimation for the GSMaP precipitation product. After point to pixel comparison, satellite precipitation estimates were used for runoff simulation in the Trishuli catchment with and without bias correction for each product. Among the two products, TRMM shows good simulation result without any bias correction for calibration and validation period with scaling factor of 2.24 for precipitation which is higher than that for gauge precipitation. This suggests, it could be used for runoff simulation to the catchments where there is no precipitation station. But it is too early to conclude by just looking into one catchment. So extensive study need to be done to make such conclusion.Journal of Hydrology and Meteorology, Vol. 8(1) p.22-31


2015 ◽  
Vol 50 (4) ◽  
pp. 217-229 ◽  
Author(s):  
Zbigniew Siejka

Abstract In this paper the advantages of using combination of different GNSS including GPS, GLONASS and BeiDou with respect to singe GPS are presented. It was shown that an improvement of satellite conditions at the chosen measurement point due to increase of the number of visible satellites has an impact on RTK measurement errors. Additionally, it was shown that there are systematic errors in RTK measurements that can be eliminated to get more precise results of them, especially in the case of height determination.


Sign in / Sign up

Export Citation Format

Share Document