Biomechanical behavior of human intervertebral discs subjected to long lasting axial loading

Biorheology ◽  
1984 ◽  
Vol 21 (5) ◽  
pp. 675-686 ◽  
Author(s):  
W. Koeller ◽  
F. Funke ◽  
F. Hartmann
2021 ◽  
Author(s):  
Sabine Bauer ◽  
Ivanna Kramer

The knowledge about the impact of structure-specific parameters on the biomechanical behavior of a computer model has an essential meaning for the realistic modeling and system improving. Especially the biomechanical parameters of the intervertebral discs, the ligamentous structures and the facet joints are seen in the literature as significant components of a spine model, which define the quality of the model. Therefore, it is important to understand how the variations of input parameters for these components affect the entire model and its individual structures. Sensitivity analysis can be used to gain the required knowledge about the correlation of the input and output variables in a complex spinal model. The present study analyses the influence of the biomechanical parameters of the intervertebral disc using different sensitivity analysis methods to optimize the spine model parameters. The analysis is performed with a multi-body simulation model of the cervical functional spinal unit C6-C7.


Author(s):  
Derek Zwambag ◽  
Brigitte Laird ◽  
Stephanie DeWitte-Orr ◽  
Diane Gregory

Abstract Healthy function of intervertebral discs (IVDs) depends on their tissue mechanical properties. Native cells embedded within IVD tissues are responsible for building, maintaining, and repairing IVD structures in response to genetic, biochemical, and mechanical signals. Organ culturing provides a method for investigating how cells respond to these stimuli in their natural architectural environment. The purpose of this study was to determine how organ culturing affects the mechanical characteristics of functional spine units (FSUs) across the entire range of axial loading, including the neutral zone, using a rat tail model. Rat tail FSUs were organ cultured at 37°C in an unloaded state in standard culture media for either 1-Day (n=8) or 6-Days (n=12). Non-cultured FSUs (n=12) were included as fresh control specimens. Axial mechanical properties were tested by applying cyclical compression and tension. A novel, mathematical approach was developed to fully characterize the relationship between load, stiffness, and deformation through the entire range of loading. Culturing FSUs for 1-Day did not affect any of the axial mechanical outcome measures compared to non-cultured IVDs; however, culturing for 6-days increased the size of neutral zone by 112% and decreased the stiffness in neutral zone, compressive, and tensile regions by 53%, 19%, and 15% respectively, compared to non-cultured FSUs. These results highlight the importance of considering how the mechanical integrity of IVD tissues may affect the transmission of mechanical signals to cells in unloaded organ culturing experiments.


2017 ◽  
Vol 80 (3) ◽  
pp. 301-311
Author(s):  
Dawid Trzciński ◽  
Anna Myszka ◽  
Janusz Piontek

AbstractSchmorl’s nodes are vertical herniation of intervertebral discs into the body of neighbouring vertebral endplate. Notwithstanding extensive studies, no consensus has been reached in the subject of their possible etiology. It is hypothesized that physical stress, trauma and high axial loading are the key factors in the occurrence of this pathology. The main objective of the current work is to reevaluate the relationship between stature and body mass and Schmorl’s nodes. For this purpose, skeletal samples from Lithuania (44 males and 19 females) and Poland (97 males and 60 females) were used. The study confirmed that Schmorl’s nodes are age-independent, and more frequent in males (12.63% on the superior and 19.32% on the inferior surface of vertebrae) than in females (6.23% and 12.29% respectively). Obtained results also suggest that high stature (e.g. Spearmann correlation for superior:R=0.20 p=0.017, and inferior:R=0.31p=0.000 surface of vertebrae) and body mass (R=0.25,p=0.002 andR=0.32,p<0.001, respectively) are factors that increase the risk of Schmorl’s nodes. Authors hypothesize that the afore-mentioned body size traits alter loadings acting on intervertebral discs, and rigidity of the spine.


1997 ◽  
Vol 01 (02) ◽  
pp. 131-139 ◽  
Author(s):  
S. Kumaresan ◽  
N. Yoganandan ◽  
F. A. Pintar

The uncovertebral joints appear in the adult human cervical spinal column. While the descriptions of this structure have been reported, methods to quantify the dimensions of these joints are lacking. Therefore, in this study a preliminary attempt was made to develop a methodology to quantify the three-dimensional anatomical details of these joints in the adult human cervical spine using sequential cryomicrotome anatomic sections. Bilateral dorsal to ventral length, medial to lateral depth, and caudal to cranial height measurements were obtained from C2-T1 levels. The well developed larger joints were observed in the mid to lower cervical (C3-C7) regions and the smaller joints were noted in the most cranial and caudal (C2-C3, C7-T1) levels. Uncovertebral joints in the mid to lower cervical region extended further ventrally compared to the most cranial and caudal levels. The height of the uncovertebral joints was equal to the lateral height of the intervertebral discs throughout the extent of the joint. The mean overall medial to lateral depth of the joint was 3.8 mm (± 1.8). These quantitative three-dimensional descriptions assist in describing uncovertebral joints in stress analysis based finite element models to understand its effects on the cervical spine biomechanical behavior.


2014 ◽  
Vol 4 (1_suppl) ◽  
pp. s-0034-1376539-s-0034-1376539
Author(s):  
E. Krock ◽  
D. H. Rosenzweig ◽  
A. J. Chabot-Dore ◽  
P. Jarzem ◽  
M. H. Weber ◽  
...  

2019 ◽  
Vol 2 (3) ◽  
pp. 1-9
Author(s):  
Russel J Reiter ◽  
Sergio Rosales-Corral ◽  
Ramaswamy Sharma

     Low back pain (lumbar pain) due to injury of or damage to intervertebral discs is common in all societies.  The loss of work time as a result of this problem is massive.  Recent research suggests that melatonin may prevent or counteract intervertebral disc damage. This may be especially relevant in aging populations given that endogenous melatonin, in most individuals, dwindles with increasing age. The publications related to melatonin and its protection of the intervertebral disc are reviewed herein, including definition of some molecular mechanisms that account for melatonin’s protective actions. 


MedPharmRes ◽  
2019 ◽  
Vol 2 (4) ◽  
pp. 15-19
Author(s):  
Son Nguyen ◽  
Son Vi ◽  
Hoat Luu ◽  
Toan Do

There are cases when symptoms are available but no abnormal stenosis is found in MRI and vice versa. Axial-loaded MRI has been shown that it can demonstrate more accurately the real status of spinal canal stenosis than conventional MRI. This is the first time we applied a new system that we have recreated from the original loading frame system in order to fit with the demands of Vietnamese people. Sixty-two patients were selected from Phu Tho Hospital in Phu Tho Province, Vietnam, who fulfilled the inclusion criteria. The Anterior-posterior diameter (APD), Dura Cross-sectional Area (DSCA) in conventional MRI and axial loaded MRI, and changes in APD and DCSA were determined at the single most constricted intervertebral level. The APD and DCSA in axial loaded MRI had very good significant correlations with VAS for back pain (rs=0.83, 0.79), leg pain (rs=0.69, 0.57) and JOA score (rs=0.70, 0.65). APD and DCSA in axial loaded MRI significantly correlated with the severity of symptoms. Our axial loading MRI provides more valuable information than the conventional MRI for assessing patients with LSCS.


Sign in / Sign up

Export Citation Format

Share Document