scholarly journals A Brief Review of Relation Extraction Based on Pre-Trained Language Models

Author(s):  
Tiange Xu ◽  
Fu Zhang

Relation extraction is to extract the semantic relation between entity pairs in text, and it is a key point in building Knowledge Graphs and information extraction. The rapid development of deep learning in recent years has resulted in rich research results in relation extraction tasks. At present, the accuracy of relation extraction tasks based on pre-trained language models such as BERT exceeds the methods based on Convolutional or Recurrent Neural Networks. This review mainly summarizes the research progress of pre-trained language models such as BERT in supervised learning and distant supervision relation extraction. In addition, the directions for future research and some comparisons and analyses are discussed in our whole survey. The survey may help readers understand and catch some key techniques about the issue, and identify some future research directions.

2021 ◽  
Vol 1036 ◽  
pp. 20-31
Author(s):  
Jun Jie Ye ◽  
Zhi Rong He ◽  
Kun Gang Zhang ◽  
Yu Qing Du

Ti-Ni based shape memory alloys (SMAs) are of excellent shape memory effect, superelasticity and damping property. These properties of the alloys can be fully displayed only after proper heat treatment. In this paper, the research progresses of the effect of the heat treatment on the microstructure, phase composition, phase transformation behaviors and shape memory properties in Ti-Ni based SMAs are reviewed, the correlation influence mechanism is summarized, and the future research directions in this field are pointed out. It is expected to provide reference for the development of Ti-Ni based SMAs and their heat treatment technologies.


2018 ◽  
Vol 6 (40) ◽  
pp. 10672-10686 ◽  
Author(s):  
Qing Zhang ◽  
Huanli Dong ◽  
Wenping Hu

This article places special focus on the recent research progress of the EP method in synthesizing CPs. In particular, their potential applications as 2D CPs are summarized, with a basic introduction of the EP method, its use in synthesizing CPs as well as the promising applications of the obtained CPs in different fields. Discussions of current challenges in this field and future research directions are also given.


2019 ◽  
Vol 90 (5-6) ◽  
pp. 710-727 ◽  
Author(s):  
Yiwei Ouyang ◽  
Xianyan Wu

In order to review the most effective ways to improve the mechanical properties of composite T-beams and further increase their application potential, research progress on the mechanical properties of textile structural composite T-beams was summarized based on two-dimensional (2-D) ply structure composite T-beams, delamination resistance enhanced 2-D ply structure T-beams, and three-dimensional (3-D) textile structural composite T-beams; future research directions for composite T-beams were also considered. From existing literature, the research status and application bottlenecks of 2-D ply structure composite T-beams and T-beams with enhanced delamination resistance performance were described, as were the specific classification, research progress, and mechanical properties of 3-D textile structural composite T-beams. In addition, the superior mechanical properties of 3-D braided textile structural composite T-beams, specifically their application potential based on excellent delamination resistance capacity, were highlighted. Future research directions for composite T-beams, that is, the applications of high-performance raw materials, locally enhanced design, structural blending enhancement, functionality, and intelligence are presented in this review.


2019 ◽  
pp. 120633121988135
Author(s):  
Weijia Wang

With the rapid development of information and communication technology, physical space has been increasingly enhanced by digital technology. The way people and space interact is significantly changed. In particular, an increased interest in the notion of place has emerged in examining smart city development, digital engagement, and people–technology relationships in hybrid physical–digital space. In this article, a place-centric perspective is employed to investigate digitally enhanced people–space interactions. Based on a multimethod research design that combines physical survey, field observation, and interview, this research employs a case study of a shopping mall to examine people’s everyday practices of digitally enabled placemaking. It is found that a range of digital interfaces functions as a system at various proxemic scales in hybrid space, which open up new spatialities by mediating trans-scale placemaking practices. Type-forms of digitally enabled people–space interactions are also summarized. The paper concludes that digitally enabled placemaking in this particular case is constituted within a closed mechanism. Future research directions are also raised at the end.


2019 ◽  
Vol 1 (3) ◽  
pp. 201-223 ◽  
Author(s):  
Guohui Xiao ◽  
Linfang Ding ◽  
Benjamin Cogrel ◽  
Diego Calvanese

In this paper, we present the virtual knowledge graph (VKG) paradigm for data integration and access, also known in the literature as Ontology-based Data Access. Instead of structuring the integration layer as a collection of relational tables, the VKG paradigm replaces the rigid structure of tables with the flexibility of graphs that are kept virtual and embed domain knowledge. We explain the main notions of this paradigm, its tooling ecosystem and significant use cases in a wide range of applications. Finally, we discuss future research directions.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Huixin Wu ◽  
Feng Wang

Zero knowledge proof system which has received extensive attention since it was proposed is an important branch of cryptography and computational complexity theory. Thereinto, noninteractive zero knowledge proof system contains only one message sent by the prover to the verifier. It is widely used in the construction of various types of cryptographic protocols and cryptographic algorithms because of its good privacy, authentication, and lower interactive complexity. This paper reviews and analyzes the basic principles of noninteractive zero knowledge proof system, and summarizes the research progress achieved by noninteractive zero knowledge proof system on the following aspects: the definition and related models of noninteractive zero knowledge proof system, noninteractive zero knowledge proof system of NP problems, noninteractive statistical and perfect zero knowledge, the connection between noninteractive zero knowledge proof system, interactive zero knowledge proof system, and zap, and the specific applications of noninteractive zero knowledge proof system. This paper also points out the future research directions.


2012 ◽  
Vol 174-177 ◽  
pp. 2293-2297
Author(s):  
Cheng Lei ◽  
Ling Yun Fan

With the rapid development of Urbanization, China’s urban fringes are faced with a new development background and have new features which are different from the ones the domestic scholars summarized in early years. This document based on a better knowledge of the new development background of urban fringes in Suzhou-Wuxi-Changzhou Region, concludes two external factors, summarizes features of fringe evolution in an empirical perspective and proposes prospect of future research directions.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 46
Author(s):  
Chun Wang ◽  
Mei Qi ◽  
Jiameng Guo ◽  
Chengxu Zhou ◽  
Xiaojun Yan ◽  
...  

Phytohormones are a class of small organic molecules that are widely used in higher plants and microalgae as chemical messengers. Phytohormones play a regulatory role in the physiological metabolism of cells, including promoting cell division, increasing stress tolerance, and improving photosynthetic efficiency, and thereby increasing biomass, oil, chlorophyll, and protein content. However, traditional abiotic stress methods for inducing the accumulation of energy storage substances in microalgae, such as high light intensity, high salinity, and heavy metals, will affect the growth of microalgae and will ultimately limit the efficient accumulation of energy storage substances. Therefore, the addition of phytohormones not only helps to reduce production costs but also improves the efficiency of biofuel utilization. However, accurate and sensitive phytohormones determination and analytical methods are the basis for plant hormone research. In this study, the characteristics of phytohormones in microalgae and research progress for regulating the accumulation of energy storage substances in microalgae by exogenous phytohormones, combined with abiotic stress conditions at home and abroad, are summarized. The possible metabolic mechanism of phytohormones in microalgae is discussed, and possible future research directions are put forward, which provide a theoretical basis for the application of phytohormones in microalgae.


Author(s):  
Yu Chen ◽  
Yiduo Yang ◽  
Mengjiao Li ◽  
Erdong Chen ◽  
Weilei Mu ◽  
...  

The booming wearable market and recent advances in material science has led to the rapid development of the various wearable sensors, actuators, and devices that can be worn, embedded in fabric or accessories, or tattoos directly onto the skin. Wearable actuators, a subcategory of wearable technology, have attracted enormous interest from researchers in various disciplines and many wearable actuators and devices have been developed in the past few decades to assist and improve people's everyday lives. In this paper, we review the actuation mechanisms, structures, applications, and limitations of recently developed wearable actuators including pneumatic and hydraulic actuators, shape memory alloys and polymers, thermal and hygroscopic materials, dielectric elastomers, ionic and conducting polymers, piezoelectric actuators, electromagnetic actuators, liquid crystal elastomers, etc. Examples of the recent applications such as wearable soft robots, haptic devices, and personal thermal regulation textiles are highlighted. Finally, we point out the current bottleneck and suggest the prospective future research directions for wearable actuators.


Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Kang Du ◽  
Hamdi Barkaoui ◽  
Xudong Zhang ◽  
Limin Jin ◽  
Qinghai Song ◽  
...  

Abstract Optical metasurfaces is a rapidly developing research field driven by its exceptional applications for creating easy-to-integrate ultrathin planar optical devices. The tight confinement of the local electromagnetic fields in resonant photonic nanostructures can boost many optical effects and offer novel opportunities for the nanoscale control of light–matter interactions. However, once the structure-only metasurfaces are fabricated, their functions will be fixed, which limits it to make breakthroughs in practical applications. Recently, persistent efforts have led to functional multiplexing. Besides, dynamic light manipulation based on metasurfaces has been demonstrated, providing a footing ground for arbitrary light control in full space-time dimensions. Here, we review the latest research progress in multifunctional and tunable metasurfaces. Firstly, we introduce the evolution of metasurfaces and then present the concepts, the basic principles, and the design methods of multifunctional metasurface. Then with more details, we discuss how to realize metasurfaces with both multifunctionality and tunability. Finally, we also foresee various future research directions and applications of metasurfaces including innovative design methods, new material platforms, and tunable metasurfaces based metadevices.


Sign in / Sign up

Export Citation Format

Share Document