scholarly journals The Active Phytohormone in Microalgae: The Characteristics, Efficient Detection, and Their Adversity Resistance Applications

Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 46
Author(s):  
Chun Wang ◽  
Mei Qi ◽  
Jiameng Guo ◽  
Chengxu Zhou ◽  
Xiaojun Yan ◽  
...  

Phytohormones are a class of small organic molecules that are widely used in higher plants and microalgae as chemical messengers. Phytohormones play a regulatory role in the physiological metabolism of cells, including promoting cell division, increasing stress tolerance, and improving photosynthetic efficiency, and thereby increasing biomass, oil, chlorophyll, and protein content. However, traditional abiotic stress methods for inducing the accumulation of energy storage substances in microalgae, such as high light intensity, high salinity, and heavy metals, will affect the growth of microalgae and will ultimately limit the efficient accumulation of energy storage substances. Therefore, the addition of phytohormones not only helps to reduce production costs but also improves the efficiency of biofuel utilization. However, accurate and sensitive phytohormones determination and analytical methods are the basis for plant hormone research. In this study, the characteristics of phytohormones in microalgae and research progress for regulating the accumulation of energy storage substances in microalgae by exogenous phytohormones, combined with abiotic stress conditions at home and abroad, are summarized. The possible metabolic mechanism of phytohormones in microalgae is discussed, and possible future research directions are put forward, which provide a theoretical basis for the application of phytohormones in microalgae.

2021 ◽  
Vol 1036 ◽  
pp. 20-31
Author(s):  
Jun Jie Ye ◽  
Zhi Rong He ◽  
Kun Gang Zhang ◽  
Yu Qing Du

Ti-Ni based shape memory alloys (SMAs) are of excellent shape memory effect, superelasticity and damping property. These properties of the alloys can be fully displayed only after proper heat treatment. In this paper, the research progresses of the effect of the heat treatment on the microstructure, phase composition, phase transformation behaviors and shape memory properties in Ti-Ni based SMAs are reviewed, the correlation influence mechanism is summarized, and the future research directions in this field are pointed out. It is expected to provide reference for the development of Ti-Ni based SMAs and their heat treatment technologies.


2018 ◽  
Vol 6 (40) ◽  
pp. 10672-10686 ◽  
Author(s):  
Qing Zhang ◽  
Huanli Dong ◽  
Wenping Hu

This article places special focus on the recent research progress of the EP method in synthesizing CPs. In particular, their potential applications as 2D CPs are summarized, with a basic introduction of the EP method, its use in synthesizing CPs as well as the promising applications of the obtained CPs in different fields. Discussions of current challenges in this field and future research directions are also given.


Author(s):  
Ramteen Sioshansi ◽  
Paul Denholm ◽  
Juan Arteaga ◽  
Sarah Awara ◽  
Shubhrajit Bhattacharjee ◽  
...  

2019 ◽  
Vol 90 (5-6) ◽  
pp. 710-727 ◽  
Author(s):  
Yiwei Ouyang ◽  
Xianyan Wu

In order to review the most effective ways to improve the mechanical properties of composite T-beams and further increase their application potential, research progress on the mechanical properties of textile structural composite T-beams was summarized based on two-dimensional (2-D) ply structure composite T-beams, delamination resistance enhanced 2-D ply structure T-beams, and three-dimensional (3-D) textile structural composite T-beams; future research directions for composite T-beams were also considered. From existing literature, the research status and application bottlenecks of 2-D ply structure composite T-beams and T-beams with enhanced delamination resistance performance were described, as were the specific classification, research progress, and mechanical properties of 3-D textile structural composite T-beams. In addition, the superior mechanical properties of 3-D braided textile structural composite T-beams, specifically their application potential based on excellent delamination resistance capacity, were highlighted. Future research directions for composite T-beams, that is, the applications of high-performance raw materials, locally enhanced design, structural blending enhancement, functionality, and intelligence are presented in this review.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Huixin Wu ◽  
Feng Wang

Zero knowledge proof system which has received extensive attention since it was proposed is an important branch of cryptography and computational complexity theory. Thereinto, noninteractive zero knowledge proof system contains only one message sent by the prover to the verifier. It is widely used in the construction of various types of cryptographic protocols and cryptographic algorithms because of its good privacy, authentication, and lower interactive complexity. This paper reviews and analyzes the basic principles of noninteractive zero knowledge proof system, and summarizes the research progress achieved by noninteractive zero knowledge proof system on the following aspects: the definition and related models of noninteractive zero knowledge proof system, noninteractive zero knowledge proof system of NP problems, noninteractive statistical and perfect zero knowledge, the connection between noninteractive zero knowledge proof system, interactive zero knowledge proof system, and zap, and the specific applications of noninteractive zero knowledge proof system. This paper also points out the future research directions.


Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Kang Du ◽  
Hamdi Barkaoui ◽  
Xudong Zhang ◽  
Limin Jin ◽  
Qinghai Song ◽  
...  

Abstract Optical metasurfaces is a rapidly developing research field driven by its exceptional applications for creating easy-to-integrate ultrathin planar optical devices. The tight confinement of the local electromagnetic fields in resonant photonic nanostructures can boost many optical effects and offer novel opportunities for the nanoscale control of light–matter interactions. However, once the structure-only metasurfaces are fabricated, their functions will be fixed, which limits it to make breakthroughs in practical applications. Recently, persistent efforts have led to functional multiplexing. Besides, dynamic light manipulation based on metasurfaces has been demonstrated, providing a footing ground for arbitrary light control in full space-time dimensions. Here, we review the latest research progress in multifunctional and tunable metasurfaces. Firstly, we introduce the evolution of metasurfaces and then present the concepts, the basic principles, and the design methods of multifunctional metasurface. Then with more details, we discuss how to realize metasurfaces with both multifunctionality and tunability. Finally, we also foresee various future research directions and applications of metasurfaces including innovative design methods, new material platforms, and tunable metasurfaces based metadevices.


2020 ◽  
Vol 24 (2) ◽  
pp. 200-215
Author(s):  
Lihong Liu ◽  
Boshi Cheng ◽  
Zhengwei Yang ◽  
Huifeng Wang ◽  
Chuang Yue ◽  
...  

In recent years, with the continuous depletion of traditional fossil energy, the research of new energy storage materials has become one of the important ways to solve the issue of energy depletion. Generally, in an energy storage system, lithium-ion battery (LIB) has been widely applied in electronic intelligent devices and electrical vehicles (EVs). In an energy conversion system, as the most promising green energy system, solar cells have become a hot research field for scientists. Most recently, oxocarbon organic conjugated compounds (OOCCs) have been widely used in LIBs and solar cells due to their advantages such as abundant raw materials, environmental friendliness and high efficiency. As in this paper, the research progress of LIBs and solar cells based on OOCCs is reviewed, the synthesis strategies of these organic energy storage/conversion materials are summarized and the future research direction of organic energy materials is also prospected.


2012 ◽  
Vol 550-553 ◽  
pp. 284-291
Author(s):  
Ya Hong Li ◽  
Yu Qin Zhu

Unsupported MoS2hydrodesulfurization(HDS) catalysts is sulfide in its original state, so there is no need to add toxic sulfur compounds to presulfurize the hydrogenation catalyst, which has ultra-high capacity to HDS and causing attentions. This paper focuses on summarizing the preparation, characterization and desulfurization mechanism of unsupported nano MoS2catalyst and provides its future research directions.


2020 ◽  
Vol 143 ◽  
pp. 02027
Author(s):  
Zhao Bin ◽  
Cheng Yongqiang ◽  
Guo Cuilian ◽  
Liu Maoke ◽  
Yao Puyu ◽  
...  

Microplastics are attracting more and more attention as a new type of pollutant in the ecological environment. Microplastics are difficult to degrade because of their unique physical and chemical properties. Some microplastics adsorbed toxic chemicals (e.g. heavy metals or organic pollutants) will cause a series of toxicological effects in organisms. This paper summarized the research progress in microplastics from the aspects of the types, distribution, detection and the toxicological effects. In addition, future research directions were also proposed and discussed.


2021 ◽  
Vol 11 (12) ◽  
pp. 5725
Author(s):  
Anbesh Jamwal ◽  
Rajeev Agrawal ◽  
Monica Sharma ◽  
Antonio Giallanza

Recent developments in manufacturing processes and automation have led to the new industrial revolution termed “Industry 4.0”. Industry 4.0 can be considered as a broad domain which includes: data management, manufacturing competitiveness, production processes and efficiency. The term Industry 4.0 includes a variety of key enabling technologies i.e., cyber physical systems, Internet of Things, artificial intelligence, big data analytics and digital twins which can be considered as the major contributors to automated and digital manufacturing environments. Sustainability can be considered as the core of business strategy which is highlighted in the United Nations (UN) Sustainability 2030 agenda and includes smart manufacturing, energy efficient buildings and low-impact industrialization. Industry 4.0 technologies help to achieve sustainability in business practices. However, very limited studies reported about the extensive reviews on these two research areas. This study uses a systematic literature review approach to find out the current research progress and future research potential of Industry 4.0 technologies to achieve manufacturing sustainability. The role and impact of different Industry 4.0 technologies for manufacturing sustainability is discussed in detail. The findings of this study provide new research scopes and future research directions in different research areas of Industry 4.0 which will be valuable for industry and academia in order to achieve manufacturing sustainability with Industry 4.0 technologies.


Sign in / Sign up

Export Citation Format

Share Document