Extraction of barium oxide nanoparticles from petroleum waste sludge wastes

2021 ◽  
pp. 1-7
Author(s):  
N.M. Khalil ◽  
Yousif Algamal

Petroleum Waste sludge (PWS) could be used as unusual source for the extraction of barium oxide nanoparticles. A hydrothermal method was adapted to precipitate barium as barium hydroxide that calcined at different calcination temperatures up to 1000 °C to obtain barium oxide nano particles. The mineralogical composition, morphology, particle size and spot analysis of the extracted particles were followed using XRD and SEM+EDAX techniques. These investigations confirmed the purity and nano size of barium oxide particles extracted from PWS at 600 °C.

2021 ◽  
Vol 19 (4) ◽  
pp. 315-328
Author(s):  
N.M. Khalil ◽  
Yousif Algamal

This work aims at maximum exploitation of petroleum waste sludge as additive to portland cement to prepare blended cements and hence increasing its production capacity without further firing. This will decrease the main cement industry problems involving environmental pollution such as releasing gases and high-energy consumption during industry and hence maximizes the production economics. Six batches of ordinary portland cement (OPC) mixed with different proportions of petroleum waste sludge (PWS) donated as C1 (control batch contains no PWS), C2 (contains 90 wt.% of OPC+10 wt.% of PWS), C3 (contains 80 wt.% of OPC+20 wt.% of PWS), C4 (contains 70 wt.% of OPC+30 wt.% of PWS), C4 (contains 60 wt.% of OPC+40 wt.% of PWS) and C6 (contains 50 wt.% of OPC+50 wt.% of PWS), were prepared and mixed individually with the suitable amount of mixing water. Cement mixes C2, C3 and C4 showed improved cementing and physicomechanical properties compared with pure cement (C1) with special concern of mix C4. Such improvement is due to the relatively higher surface area as well as the high content of kaolinite and quartz in the added PWS (high pozzalanity) favoring the hydration process evidenced by the increase in the cement hydration product (portlandite mineral (Ca (OH) 2).


2021 ◽  
Author(s):  
S. Neminushchaya ◽  
E. Tomina ◽  
A. Dmitrenkov

The aim of this work was to study compositions based on vegetable oil waste and nanoscale zinc oxide particles for processing natural wood. The sol-gel method was used for the synthesis of zinc oxide nanoparticles. The synthesized zinc oxide nanoparticles did not contain impurities and had a shape close to spherical, and their size did not exceed 20 nm. We used freshly prepared suspensions of zinc oxide nanoparticles in used vegetable oil with their content in the amount of 0.1, 0.5 and 1.0 wt. parts per 100 parts of oil. The wood was treated by hot-cold impregnation. The tests were carried out on samples of birch and pine wood of standard sizes. In the modified samples, the wetting angle, moisture and water absorption, as well as their swelling were determined. It is shown that the use of zinc oxide nanoparticles in compositions based on vegetable oil waste can significantly reduce the moisture and water resistance of wood and reduce its swelling. The optimal dosages of the nanopowder introduced into the used vegetable oil and the conditions of impregnation were selected. The compositions used on the basis of vegetable oil waste are characterized by environmental safety, and the resulting wood samples had an improved appearance.


2021 ◽  
Vol 10 (2) ◽  
pp. 54-58
Author(s):  
Giang Nguyen Thi Le ◽  
Tu Nguyen Cong ◽  
Thang Pham Van ◽  
Mai Nguyen Thi Tuyet ◽  
Lan Nguyen Thi ◽  
...  

In the present work,  a green synthesis of  cuprous oxide nanoparticles  was demonstrated using the freshly prepared aqueous extract of the aloe vera plant and the cupper oxide nanoparticles  were characterized by the analytical techniques such as UV-Vis, FT-IR, XRD, and EDX. Characterization techniques confirmed that the biomolecules involved  in the formation of cupper oxide nanoparticles and also they stabilized the nanoparticles.


2018 ◽  
Vol 54 (23) ◽  
pp. 2914-2917 ◽  
Author(s):  
Kerda Keevend ◽  
Guido Panzarasa ◽  
Fabian H. L. Starsich ◽  
Martin Zeltner ◽  
Anastasia Spyrogianni ◽  
...  

MeltPEGylation constitutes an elegant one-pot route for the efficient PEGylation of metal oxide nanoparticles with improved hemo- and cytocompatibility.


2014 ◽  
Vol 906 ◽  
pp. 190-195
Author(s):  
Sujata Mandal ◽  
Dominic Savio ◽  
S.J. Selvaraj ◽  
S. Natarajan ◽  
Asit Baran Mandal

Zinc and iron oxide nanoparticles were synthesized using natural bio-polymeric templates viz. cellulose and sodium alginate. Cellulose fibres from different sources viz. filter-and blot-papers, were used as templates for this purpose. The synthesized Zinc oxide nanoparticles were characterized by X-ray diffraction (XRD), fourier transform infra-red spectra (FT-IR), UV-Visible spectrophotomer (UV-Vis) and scanning electron microscopic (SEM) studies. XRD studied confirmed the formation of highly crystalline hexagonal wurtzite phase of ZnO in all the synthesized nanoparticles. The average crystallite sizes of the nanoparticles obtained using different templates, were well below 50 nm. Characteristics of the zinc oxide nanoparticles obtained by template-based techniques were compared with those obtained by co-precipitation technique. Influence of various templates on the characteristics of metal oxide nanoparticles was studied.


2004 ◽  
Vol 828 ◽  
Author(s):  
Jun Tamaki

ABSTRACTNovel sensor design for high sensitivity gas sensors has been proposed for the detection of dilute NO2 using WO3 film. First, concerning nano-design of oxide particles, the disk-shaped WO3 particles (300 nm in diameter, 20 nm in thickness) were deposited on Au comb-type microelectrode (line width: 5 μm, distance between lines: 5 μm) to be WO3 thick film sensor. This sensor showed the excellent sensing properties to dilute NO2 at optimized thickness. Second, the nano-gap electrode with various gap-sizes (110–1500 nm) was fabricated by means of MEMS techniques in order to investigate the effect of microelectrode. When the gap size was decreased less than 800 nm, the sensitivity to dilute NO2 increased with decreasing gap size. This was understood from the facts that the contribution of interface resistance between particle and electrode to total sensor resistance was increased and that the sensitivity at electrode-grain interface was much larger than that at grain boundary. It was found that the designs of not only nano-particles but also nano-electrode were important for the fabrication of high sensitivity gas sensor.


RSC Advances ◽  
2014 ◽  
Vol 4 (22) ◽  
pp. 11367-11374 ◽  
Author(s):  
Lokesh Koodlur Sannegowda ◽  
K. R. Venugopala Reddy ◽  
K. H. Shivaprasad

CVs showing the electrocatalytic reduction of dioxygen with (a) bare GC; GC modified with (b) CoPTA; (c) metallic oxide nanoparticles after exposing the particles to air for 1 day and (d) CoPTA capped copper nanoparticles.


2019 ◽  
Vol 342 ◽  
Author(s):  
Maliheh Akhtari ◽  
Mohammadreza Dehghani-Firouzabadi ◽  
Meysam Aliabadi ◽  
Mehdi Arefkhani

The aim of this study was to assess the performance of graphene oxide nanoparticles in paper coating formulations in order to improve the antibacterial, physical and mechanical properties of paperboard. The paper was coated with graphene oxide nanoparticles at concentrations of 100 and 200 ppm together with 5% cationic starch (dry weight) as a retention aid and for better coverage and more homogeneous positioning of nanographene oxide particles on the surface of the paper. The paper surface coated with nanographene oxide particles and starch was characterised using ATR-FTIR and SEM. The antibacterial assay was performed according to the Turbidity Method. For the antibacterial tests of paper sheets, Escherichia coli and Staphylococcus aureus were used as Gram-negative and Gram-positive bacteria respectively. The results showed that UV adsorption was reduced, with the largest reduction obtained when using nanographene oxide particles at 200 ppm. Turbidity in the samples including S. aureus was also lower. The growth rates of S. aureus bacterium in the control and the paper specimens coated with 200 ppm nanographene oxide were 89% and 24%, respectively. The density and thickness of the paper sheets increased in the paper coated with cationic starch and nanoparticles in comparison with uncoated paper. The nanoparticles had no significant effect on the thickness of coated papers. The addition of nanographene oxide particles improved the resistance to air and barrier properties of paper sheets. The burst and tear indexes increased for the paper coated with starch and nanographene oxide particles.


2020 ◽  
Vol 3 (3) ◽  
Author(s):  
Gowrimanohar N ◽  
Rosemary Michael

In recent years, nanotechnology has emerged as a start-of-the-art, with multifarious applications in a wide array of fields. Studies on green synthesis of nanoparticles moves forward these days. The present work involves the green method of synthesizing Iron oxide nanoparticles [Fe2O3] by Phyllanthus Niruri leaf extract and NaOH which acts as a precipitating agent. Furthermore, the green synthesized Iron oxide nanoparticles were characterized and its antibacterial activity was investigated. As this plant extract is more beneficial, it is energy efficient, low cost and environmentally friendly process than the biohazardous chemical synthesis. Iron oxide nano particles are gaining importance for their uses in environmental remediation technologies. The characterization of nano particles includes the IR, UV-Vis, and Size determination using SEM and XRD. The average crystalline size of the iron oxide nanoparticles was calculated by Debye’s Scherrer formula,d = 12.34nm. The analytical studies revealed that the synthesized Iron oxide nanoparticles almost have the identical size and morphology. Thus, the above studies concluded, the synthesized material was Iron oxide nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document