scholarly journals Antimicrobial and antifungal activity of new fluorophenyl-containing 1,2,4-triazoles

2021 ◽  
pp. 87-93
Author(s):  
О. А. Бігдан

The achievements of the world organic chemistry are most clearly represented by scientific publications that prove the promising nature of heterocyclic substances. The possibility of combining various pharmacophore fragments and 1,2,4-triazole in one molecule is quite popular. In 2018, the drug Trifuzol-NEO appeared on the veterinary market of Ukraine, which took its rightful place among synthetic immunomodulators for various groups of unproductive animals. So, further studies of new promising compounds among substituted 1,2,4-triazole, which can be used as objects for the creation of new original domestic antimicrobial and antifungal agents, remains relevant and has theoretical and practical significance. The aim of our work was to investigate the antimicrobial and antifungal activity of a number of new fluorophenyl-containing derivatives of 1,2,4-triazole and, in some cases, to trace the presence of certain patterns between structure and action. The sensitivity of new fluorophenyl-containing derivatives of 1,2.4-triazole was studied by the method of serial dilutions in accordance with the methodological recommendations. From the initial concentration of the new synthesized compounds of 1 mg/ml, a series of two-fold serial dilutions were prepared in Mueller–Hinton broth in a volume of 1 ml. Then, 0.1 ml of microbial curtain (106 m. c./ml) was added to each tube. MIC (MIC) was determined in the absence of visible growth in a test tube with the minimum concentration of the drug, the minimum bactericidal concentration (MBcK) – in the absence of growth on agar after inoculation from transparent tubes. Dimethyl sulfoxide was used as a solvent for the compounds in the studies. The research was carried out at the Department of Microbiology, Virology and Immunology of Zaporizhzhia State Medical University. Analyzing the results of studying the sensitivity of substances to Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, it should be noted that almost all compounds were active against the bacteria. It should be noted that a number of compounds were found to be the most active against Staphylococcus aureus, and 5-(2-fluorophenyl)-4-(((5-nitrofuran-2-yl)methylene)amino-4H-1,2,4-triazole-3-thiols generally exceeded several times the activity indices of the reference drug (MIC 1.95 μg/ml, MBcK 3.9 μg/ml) to Staphylococcus aureus. Most of the compounds were found to be quite active against Candida albicans. Among the corresponding 5-(2-fluorophenyl)-4-((aryl)ylidene)amino-1,2,4-triazole-3-thiols, the highest activity for Candida albicans exhibit 5-(2-fluorophenyl) -4-((4-bromophenyl)ylidene)amino-1,2,4-triazole-3-thiol and 5-(2-fluorophenyl)-4-((2,3-dimethoxyphenyl)ylidene)amino-1,2,4-triazole-3-thiol. It was found that most of the compounds exhibit a moderate antimicrobial and a fairly high antifungal effect. The most sensitive strain was S. aureus in relation to 5-(2-fluorophenyl)-4-(((5-nitrofurans-2-yl)methylene)amino-4H-1,2,4-triazole-3-thiol, Candida albicans proved to be very sensitive to 5-(2-fluorophenyl)-4-((4-bromophenyl)ylidene)amino-1,2,4-triazole-3-thiol and 5-(2-fluorophenyl)-4((2,3-dimethoxyphenyl)ylidene)amino-1,2,4-triazole-3-thiol.

Antibiotics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 369
Author(s):  
Tuomo Laitinen ◽  
Ilia V. Baranovsky ◽  
Lidia S. Konstantinova ◽  
Antti Poso ◽  
Oleg A. Rakitin ◽  
...  

We report our investigations into the underlying differences between 1,2,3-dithiazole and their ultra-rare counterpart, 1,2,3-thiaselenazole. This rare 1,2,3-thiaselenazole chemotype was afforded by sulfur extrusion and selenium insertion into the preconstructed 1,2,3-dithiazoles. We built a library of matched paired compounds to compare and contrast the two ring systems. This led to the development of both narrow and broad-spectrum antimicrobial compounds with sub-micro molar potency, limited to no toxicity and a further understanding of the transition state electronics through molecular simulations. We also identified the potent 4,5,6-trichlorocyclopenta[d][1,2,3]thiaselenazole 11a, for use against Candida albicans, Cryptococcus neoformans var. grubii, Staphylococcus aureus and Acinetobacter baumannii, all of which have limited clinical treatment options. The 1,2,3-thiaselenazole represents a new class of potential compounds for the treatment of a host of multi-resistant hospital derived infections.


2020 ◽  
Vol 17 (12) ◽  
pp. 1538-1551
Author(s):  
Nadia Ali Ahmed Elkanzi ◽  
Rania Badaway Bakr

Background: Pyrimidine ring is one of the most important heterocyclic scaffolds due to its biological benefits as antimicrobial agents via acting as competitive suppressors of dihydropteroate synthase (DHPS) enzyme, inhibiting dihydrofolate reductase or glucosamine N-phosphate synthase. Objective: The objective of this work is preparing twenty four derivatives of pyrimidine heterocycle 1a-f, 2a-f, 3a-f and 4a-f via a facile one step reaction with antimicrobial potential. Methods: Novel twenty four derivatives of pyrimidine heterocycle 1a-f, 2a-f, 3a-f and 4a-f were prepared via a facile one step reaction by treating substituted aldehydes, urea and / or thiourea and active methylene derivatives (diethyl malonate and / or ethyl cyanoacetate) using 1,4- diazabicyclo[2.2.2]octane (DABCO) as a basic catalyst. The chemical structures of all these novel targets were proved by 1HNMR, 13CNMR, MS and elemental analyses. All the twenty four new targets 1a-f, 2a-f, 3a-f and 4a-f were assessed for their antimicrobial activity towards bacteria as Bacillus subtilis, Staphylococcus aureus, Pseudomonas aeruginosa and Escherichia coli and against fungi represented by Aspergillus flavus and Candida albicans. Results: Most of the compounds exhibited very good antimicrobial activity, especially; compound (1c) exhibited the most activity against three types of bacteria Escherichia coli, Bacillus subtilis, Staphylococcus aureus. Moreover, this derivative 1c displayed similar antifungal activity towards Candida albicans as that exhibited by amphotericin B. Conclusion: All the screened compounds 1a-f, 2a-f, 3a-f and 4a-f showed antibacterial activity with inhibition zone diameter range 6-21 mm/mg, while, regarding the antifungal activity, all the novel derivatives except 2b, 2d, 3a, 3c, 3e did not have any effect towards Aspergillus flavus and 3d did not reveal any inhibitory activity towards both fungal species.


2019 ◽  
Vol 70 (10) ◽  
pp. 3603-3610
Author(s):  
Madalina Mihalache ◽  
Cornelia Guran ◽  
Aurelia Meghea ◽  
Vasile Bercu ◽  
Ludmila Motelica ◽  
...  

The three copper complexes having a-ketoglutaric acid (H2A) and 1- (o-tolyl) biguanide (TB) ligands have been synthesized and characterized. The proposed formulas for these complexes are: [Cu(TB)(HA)]Cl (C1), [Cu(TB)(HA)CH3COO]�H2O (C2) and [Cu(TB)(HA)](NO3) (C3) where HA represents deprotonated H2A. The complexes obtained were tested for antibacterial activity against Staphylococcus aureus ATCC 25923 and Pseudomonas aeruginosa ATCC 27853, antifungal activity on Candida albicans ATCC 10231 and antitumor activity on HeLa tumor cells. Due to the antitumor, antifungal, antimicrobial activity and inhibition of inert substrate adhesion, complexes synthesized could be used for potential therapeutic applications.


2020 ◽  
Vol 21 (1) ◽  
pp. 38
Author(s):  
Afduha Nurus Syamsi ◽  
Meyta Pratiwi ◽  
Aras Prasetiyo Nugroho

Mastitis in dairy caused by microorganisms, e.g. Staphylococcus aureus and Candida albicans, is a serious problem due to its effect in decreasing quality and quantity of milk production up to 53.5%. Mastitis precautions are generally carried out using iodine solution and has risk leaving residue both on the udder and milk produced. Natural antimicrobial compounds need to be developed to solve iodine residues. An alternative natural ingredient that can be used is the skin of garlic which is known contains allicin, that is able to inhibit the growth of pathogenic microorganisms. This completely randomized design research by applying Kirby-Bauer method, aimed to identify the effect and concentration of garlic skin extracts that are effective against the growth of Staphylococcus aureus, Streptococcus mutants, Escherichia coli and Candida albicans. Research was done in 6 months in Faculty of Animal Science and Faculty of Biology Unsoed, and the datas were analyzed using ANOVA. Garlic skins were extracted using aquadest to three concentrations i.e. 5%, 10% and 15%, and were tested on to mastitis-causing microorganisms growth. The results showed the extract of garlic skins using aquadest has high potency in inhibiting the growth of mastitis-causing microorganisms. Based on the results, aqueous extract of garlic skin has inhibition activity with minimum concentration 5-10%.


Author(s):  
Haribhai Rabari ◽  
Hetal Vankar ◽  
Beenkumar Prajapati

The emergence of multidrug microbial resistance is the main challenges that the modern scientists have so far been facing in the recent era. In this respect, new series of drug classes having potential to give antimicrobial effect have been synthesized. A new series of 5- substituted-1,10 b-dihydroimidazole[1,2-c]quinazoline derivatives 8a-e have been synthesized and screened for antibacterial activity and antifungal activity. Synthesized derivatives were characterized by IR, MASS and 1H-NMR spectroscopy. Synthesized compounds show good activity, which was comparable to the standard drug and it can be useful for the further clinical study. Antibacterial activity was evaluated against four different pathogenic bacterial strains like Staphylococcus aureus, Enterococcus faecalis, Escherichia coli and Pseudo-monas aeruginosa. Among the screened compounds, 8e show good antibacterial activity against Staphylococcus aureus and Escherichia coli with MIC of 50 and 100 μg/ml respectively. Antifungal activity was evaluated  against two strains of fungi. Among the synthesized derivates, compound 8c was emerged out as the potent antifungal compound against Candida albicans and Aspergillus niger with MIC of 25 μg/ml and 75μg/ml respectively. Compound 8e also shows good antifungal activity with MIC of 50 μg/ml against both Candida albicans and Aspergillus niger. The overall results of this study indicated that  synthesized quinazoline derivatives had the potential to act as an antibacterial and antifungal agent, hence further investigation is warranted.


2002 ◽  
Vol 8 (5) ◽  
pp. 269-274 ◽  
Author(s):  
V. Zelenák ◽  
K. Györyová ◽  
D. Mlynarcík

The antibacterial and antifungal activity of zinc(II) carboxylates with composition Zn(RCOO)2•nH2O(R =H-, CH3− , CH3CH2CH2- , (CH3)2CH- , XCH2- , X=Cl, Br, I, n=0 or 2), [ZnX2(Nia+CH2COO-)2] (Nia=nicotinamide, X=Cl, Br, I) and [Zn(XCH2COO)2(Caf)2]•2H2O (Car=caffeine, X=Cl, Br) is studied against bacterial strains Staphylococcus aureus, Escherichia coli and yeast Candida albicans. The structural types are assigned to the prepared compounds and the influence of (i) carboxylate chain length, (ii) substitution of hydrogen atom of carboxylate by halogen and (iii) presence of N-donor organic ligands on the biological activity is discussed.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jean Robert Klotoe ◽  
Brice Armand Fanou ◽  
Eric Agbodjento ◽  
Arnaud Houehou ◽  
Lauris Fah ◽  
...  

Abstract Background Vulvovaginal candidiasis is a widespread mycotic infection that affects a large proportion of women of childbearing age. Its management in traditional medicine is based on the use of medicinal plants. This study aimed to evaluate the antifungal activity of Ocimum gratissimum L., Lantana camara L. and Pteleopsis suberosa Engl. & Diels used in the treatment of vulvovaginal candidiasis in Benin. Results The data obtained from the in vitro antifungal test show that the strains tested (ATCC 90028 and two clinical strains: 1MA and 3MA) were more sensitive to aqueous extracts with a better effect for Pteleopsis suberosa. This potential of the tested extracts correlated with their richness in total polyphenols. The extract of the Pteleopsis suberosa was very active on the inhibition of the reference strain ATCC 90028. On the clinical strains (1MA and 3MA) the aqueous extract of Pteleopsis suberosa showed a better MIC on the 1MA strain. In vivo model, inoculation of 100 µL of the concentrated Candida albicans suspension 1.5 × 105 UFC/mL induced the candidiasis of the female Wistar rat. The treatment with the aqueous extract of Pteleopsis suberosa, like fluconazole (reference drug), significantly reduced Candida albicans infection at a dose of 100 mg/kg after 1, 7 and 13 days of treatment. Conclusion This study revealed the potential antifungal of the Ocimum gratissimum, Lantana camara and Pteleopsis suberosa. Pteleopsis suberosa has better antifungal activity in vitro and in vivo. These observations justify the use of their medicinal plant in the traditional treatment of vulvovaginal candidiasis in Benin.


2020 ◽  
Vol 5 (1) ◽  
pp. 40-44
Author(s):  
Seema Pant

Two series of new 8-substituted-4-(4-tert-butylphenyl)-2,3-dihydro-1,5-benzothiazepine-2-carboxylic acids and 8-substituted-4-(4-acetamidophenyl)-2,3-dihydro-1,5-benzothiazepine-2-carboxylic acids have been synthesized by Michael condensation of 5-substituted-2-aminobenzenethiols with β-(4- tert-butylbenzoyl) acrylic acid or β-(4-acetamidobenzoyl) acrylic acid, in ethanol in acidic medium in a single step, in 58-64 % yield. The structures of the newly synthesized compounds were confirmed by their IR, 1H NMR and mass spectral analyses and micro analytical data. They were screened for antimicrobial activity, against the Gram-positive bacteria, Staphylococcus aureus, Gram-negative bacteria, Enterobacter cloacae and Escherichia coli, with respective reference compounds, vancomycin, polymyxin B, colistin-polymyxin B and against the fungus, Candida albicans with reference drug fluconazole. Most of the compounds showed activity against Staphylococcus aureus, Enterobacter cloacae and fungus Candida albicans, while none of the compounds showed activity against Escherichia coli.


Sign in / Sign up

Export Citation Format

Share Document