scholarly journals PROBLEMATIC ASPECTS OF SHOEPRINTS SEIZURE FROM THE CRIME SCENE (Review Article)

2020 ◽  
Vol 22 (2) ◽  
pp. 73-81
Author(s):  
O. Necheporenko

The author of the article analyzes existing methods of seizing three-dimensional and latent (two-dimensional) shoeprints, described in the forensic scientific literature, which are used in Ukraine and abroad. Attention is drawn to the fact that methods of seizing traces that have been used for a long time are a subject to minor changes, despite the development of scientific and technological progress. The author names a reason for such a phenomenon: the lack of exchange in experience with countries that use modern tools and techniques for forensic analysis, one of which is a crime scene fingerprint film lift pad. The crime scene fingerprint lift pad is most often used when seizing latent (two-dimensional) shoe prints during inspection of a crime scene. However, attention is drawn to the problem of further suitability of seized traces for carrying out forensic examination as well as to peculiarities of storing seized materials. According to the author, trace damage is associated with two groups of factors: removal of a trace with violation of a technique and removal of a trace by means of poor-quality material. The author describes several types of crime scene fingerprint lift pad which is used to seize evidence of trace evidence nature. The author notes that along with the development of technology, trace evidence methods should be advanced as well. There is an urgent need to analyze the market of imported fingerprints, its efficiency, specificity of forensic situations, weather conditions, etc. There is also a need to share experiences in the use of such materials by forensic expert subdivisions. The question as to improving domestic production of fingerprint products, increasing the cost for purchasing high-quality materials also arises. Such an approach will fix the situation with quality of a crime scene processing and collection of evidence which will have a positive impact on detection of crimes and identification of perpetrators. The author emphasizes the relevance of this study and need for new theoretical and practical developments.

Repositor ◽  
2020 ◽  
Vol 2 (5) ◽  
pp. 553
Author(s):  
Tirto Adhi Triambodo ◽  
Ali Sofyan Kholimi ◽  
Lailatul Husniah

AbstrakTaman Rekreasi Sengkaling memiliki luas keseluruhan  9 hektar yang terdiri dari 6 hektar  diantaranya ada taman dan pepohonan hijau. Mengingat luasnya Taman Rekreasi Sengkaling, disana tidak ada peta dan tempat lokasi pusat informasi wahana berada di pintu masuk yang tentu akan membuat pengunjung bingung ketika sudah berada didalam Taman Rekreasi Sengkaling ingin mengetahui informasi wahana dan membutuhkan waktu lama dalam mencapai tujuan wahana yang diinginkan. Berdasarkan dari permasalahan yang ada, maka dibutuhkan suatu aplikasi yang bisa memberikan informasi dan navigasi sehingga pengunjung dapat dengan mudah mengetahui informasi wahana dan navigasi menuju lokasi wahana. Augmented Reality adalah teknologi yang menggabungkan benda maya dua dimensi dan ataupun tiga dimensi ke dalam lingkungan nyata tiga dimensi. Teknologi Augmented Reality ini digunakan untuk pembuatan aplikasi untuk informasi dan navigasi pada Taman Rekreasi Sengkaling. Pada pengujian sistem berdasarkan hasil kuesioner dengan 5 pertanyaan kepada 30 responden untuk memakai aplikasi AR Taman Rekreasi Sengkaling. Dari pengujian sistem aplikasi AR kepada user yang memilih setuju dengan presentase 91%. Maka hasil yang didapatkan, penggunaan aplikasi Augmented Reality direspon baik oleh pengunjung Taman Rekreasi Sengkaling.Abstract  Sengkaling Recreation Park has a total area of 9 hectares consisting of 6 hectares of which there are parks and green trees. Given the breadth of the Sengkaling Recreation Park, there is no map and location of the information center where the vehicle is located at the entrance which would make visitors confused when already in the Sengkaling Recreation Park wants to know vehicle information and takes a long time to reach the desired destination. Based on the existing problems, it requires an application that can provide information and navigation so that visitors can easily find information on vehicle and navigation to the location of the vehicle. Augmented Reality is a technology that combines two-dimensional and / or three-dimensional virtual objects into a real three-dimensional environment. This Augmented Reality technology is used for making applications for information and navigation in Sengkaling Recreation Park. On testing the system based on the results of the questionnaire with 5 questions to 30 respondents to use the AR Sengkaling Recreational Park application. From testing the AR application system to users who choose to agree with a percentage of 91%. Then the results obtained, the use of Augmented Reality applications responded well by visitors to the Sengkaling Recreation Park.


2015 ◽  
Vol 61 (228) ◽  
pp. 702-712 ◽  
Author(s):  
Tong Zhang ◽  
Lili Ju ◽  
Wei Leng ◽  
Stephen Price ◽  
Max Gunzburger

AbstractFor many regions, glacier inaccessibility results in sparse geometric datasets for use as model initial conditions (e.g. along the central flowline only). In these cases, two-dimensional (2-D) flowline models are often used to study glacier dynamics. Here we systematically investigate the applicability of a 2-D, first-order Stokes approximation flowline model (FLM), modified by shape factors, for the simulation of land-terminating glaciers by comparing it with a 3-D, ‘full’-Stokes ice-flow model (FSM). Based on steady-state and transient, thermomechanically uncoupled and coupled computational experiments, we explore the sensitivities of the FLM and FSM to ice geometry, temperature and forward model integration time. We find that, compared to the FSM, the FLM generally produces slower horizontal velocities, due to simplifications inherent to the FLM and to the underestimation of the shape factor. For polythermal glaciers, those with temperate ice zones, or when basal sliding is important, we find significant differences between simulation results when using the FLM versus the FSM. Over time, initially small differences between the FLM and FSM become much larger, particularly near cold/temperate ice transition surfaces. Long time integrations further increase small initial differences between the two models. We conclude that the FLM should be applied with caution when modelling glacier changes under a warming climate or over long periods of time.


2011 ◽  
Vol 666 ◽  
pp. 506-520 ◽  
Author(s):  
F. DOMENICHINI

The vortex formation behind an orifice is a widely investigated phenomenon, which has been recently studied in several problems of biological relevance. In the case of a circular opening, several works in the literature have shown the existence of a limiting process for vortex ring formation that leads to the concept of critical formation time. In the different geometric arrangement of a planar flow, which corresponds to an opening with straight edges, it has been recently outlined that such a concept does not apply. This discrepancy opens the question about the presence of limiting conditions when apertures with irregular shape are considered. In this paper, the three-dimensional vortex formation due to the impulsively started flow through slender openings is studied with the numerical solution of the Navier–Stokes equations, at values of the Reynolds number that allow the comparison with previous two-dimensional findings. The analysis of the three-dimensional results reveals the two-dimensional nature of the early vortex formation phase. During an intermediate phase, the flow evolution appears to be driven by the local curvature of the orifice edge, and the time scale of the phenomena exhibits a surprisingly good agreement with those found in axisymmetric problems with the same curvature. The long-time evolution shows the complete development of the three-dimensional vorticity dynamics, which does not allow the definition of further unifying concepts.


Ocean Science ◽  
2018 ◽  
Vol 14 (3) ◽  
pp. 453-470 ◽  
Author(s):  
Dmitry Chalikov

Abstract. The numerical modeling of two-dimensional surface wave development under the action of wind is performed. The model is based on three-dimensional equations of potential motion with a free surface written in a surface-following nonorthogonal curvilinear coordinate system in which depth is counted from a moving surface. A three-dimensional Poisson equation for the velocity potential is solved iteratively. A Fourier transform method, a second-order accuracy approximation of vertical derivatives on a stretched vertical grid and fourth-order Runge–Kutta time stepping are used. Both the input energy to waves and dissipation of wave energy are calculated on the basis of earlier developed and validated algorithms. A one-processor version of the model for PC allows us to simulate an evolution of the wave field with thousands of degrees of freedom over thousands of wave periods. A long-time evolution of a two-dimensional wave structure is illustrated by the spectra of wave surface and the input and output of energy.


2018 ◽  
Author(s):  
Dmitry Chalikov

Abstract. The numerical modeling of two-dimensional surface wave development under the action of wind is performed. The model is based on three-dimensional equations of potential motion with free surface written in a surface-following non-orthogonal curvilinear coordinate system where depth is counted from moving surface. А three-dimensional Poisson equation for velocity potential is solved iteratively. А Fourier transform method, the second-order accuracy approximation of vertical derivatives on a stretched vertical grid and the fourth-order Runge–Kutta time stepping are used. Both the input energy to waves and dissipation of wave energy are calculated on the basis of the earlier developed and validated algorithms. A one-processor version of the model for PC allows us to simulate an evolution of wave field with thousands degrees of freedom over thousands of wave periods. A long-time evolution of two-dimensional wave structure is illustrated by the spectra of wave surface and input and output of energy.


Humaniora ◽  
2010 ◽  
Vol 1 (2) ◽  
pp. 253
Author(s):  
Hanny Wijaya

Basic element of subject is point / dot. Line, shape, form (two-dimensional and three-dimensional), and other structures (geometrically or ornamentally) are formed by a group or more points. The variety of size and composition of point will illustrate the characteristic of that point. Interesting composition will create a great artwork. Despite of variety of the structure, the technical process of colour dots had been developed for a long time. During the development of Impressionism art, some artists had tried to apply the colour dots as a new technique, which called Pointillism. Georges Seurat was a pioneerof this technique development. Pointillism was well known as Divisionism or Chromoluminarism at that moment. This technique was using an additive method that combined basic pigment colours of red, green and blue to produce optical vibration in the painting, therefore the viewers would be able to reach the maximum luminosity in their vision. The existence of this technique had proved that science and art were able to support each other. The combination of logic and aesthetic were able to create many extraordinary artworks. 


Author(s):  
H.A. Cohen ◽  
T.W. Jeng ◽  
W. Chiu

This tutorial will discuss the methodology of low dose electron diffraction and imaging of crystalline biological objects, the problems of data interpretation for two-dimensional projected density maps of glucose embedded protein crystals, the factors to be considered in combining tilt data from three-dimensional crystals, and finally, the prospects of achieving a high resolution three-dimensional density map of a biological crystal. This methodology will be illustrated using two proteins under investigation in our laboratory, the T4 DNA helix destabilizing protein gp32*I and the crotoxin complex crystal.


Author(s):  
B. Ralph ◽  
A.R. Jones

In all fields of microscopy there is an increasing interest in the quantification of microstructure. This interest may stem from a desire to establish quality control parameters or may have a more fundamental requirement involving the derivation of parameters which partially or completely define the three dimensional nature of the microstructure. This latter categorey of study may arise from an interest in the evolution of microstructure or from a desire to generate detailed property/microstructure relationships. In the more fundamental studies some convolution of two-dimensional data into the third dimension (stereological analysis) will be necessary.In some cases the two-dimensional data may be acquired relatively easily without recourse to automatic data collection and further, it may prove possible to perform the data reduction and analysis relatively easily. In such cases the only recourse to machines may well be in establishing the statistical confidence of the resultant data. Such relatively straightforward studies tend to result from acquiring data on the whole assemblage of features making up the microstructure. In this field data mode, when parameters such as phase volume fraction, mean size etc. are sought, the main case for resorting to automation is in order to perform repetitive analyses since each analysis is relatively easily performed.


Author(s):  
Yu Liu

The image obtained in a transmission electron microscope is the two-dimensional projection of a three-dimensional (3D) object. The 3D reconstruction of the object can be calculated from a series of projections by back-projection, but this algorithm assumes that the image is linearly related to a line integral of the object function. However, there are two kinds of contrast in electron microscopy, scattering and phase contrast, of which only the latter is linear with the optical density (OD) in the micrograph. Therefore the OD can be used as a measure of the projection only for thin specimens where phase contrast dominates the image. For thick specimens, where scattering contrast predominates, an exponential absorption law holds, and a logarithm of OD must be used. However, for large thicknesses, the simple exponential law might break down due to multiple and inelastic scattering.


Author(s):  
D. E. Johnson

Increased specimen penetration; the principle advantage of high voltage microscopy, is accompanied by an increased need to utilize information on three dimensional specimen structure available in the form of two dimensional projections (i.e. micrographs). We are engaged in a program to develop methods which allow the maximum use of information contained in a through tilt series of micrographs to determine three dimensional speciman structure.In general, we are dealing with structures lacking in symmetry and with projections available from only a limited span of angles (±60°). For these reasons, we must make maximum use of any prior information available about the specimen. To do this in the most efficient manner, we have concentrated on iterative, real space methods rather than Fourier methods of reconstruction. The particular iterative algorithm we have developed is given in detail in ref. 3. A block diagram of the complete reconstruction system is shown in fig. 1.


Sign in / Sign up

Export Citation Format

Share Document