scholarly journals TECHNOLOGICAL PROPERTIES OF NANODISPERSIONS BASED ON DER-330 EPOXY RESIN AND BS-50 FUMED SILICA

Author(s):  
A. A. Pykhtin ◽  
I. D. Simonov-Emelyanov

The influence of silica dioxide nanoparticles in the form of fumed silica BS-50 on the rheological properties, residual shrinkage and shrinkage stresses upon curing an epoxy resin is considered. It is shown that the introduction of BS-50 in the optimum concentration of nanoparticles into DER-330 epoxy resin results in agglomeration, which is accompanied by an abnormal behavior of the disperse system with a decrease in viscosity by ~ 25%, ultimate shrinkage by ~ 15% and the level of residual stresses by a factor of ~ 4-10. These properties are manifested when the concentration of fumed silica is 0.05 vol. % The introduction of fumed silica slows the rise of residual stresses and increases the induction period from 2 to 4 hours. Depending on the mode of curing the minimum residual stress is observed at different concentrations of BS-50. At temperatures of 30ºC and 50°C concentration was 0.5 vol. %, and at 70°C - 0.05 vol. %. Curing at 30°C and 50°C result in a fall of residual stress by a factor of 12 and 4, respectively, at 70°C, by a factor of 4.

2017 ◽  
Vol 905 ◽  
pp. 31-39 ◽  
Author(s):  
Jeremy S. Robinson ◽  
Christopher E. Truman ◽  
Thilo Pirling ◽  
Tobias Panzner

The residual stresses in heat treated 7075 aluminium alloy blocks have been characterised using two neutron diffraction strain scanning instruments. The influence of uniaxial cold compression (1-10%) on relieving the residual stress has been determined. Increasing the magnitude of cold compression from 1 to 10% has been shown to have a beneficial effect on the residual stress distribution by reducing the range between the maximum and minimum residual stresses. The effect of over aging 7075 on residual stress has also been characterised using neutron diffraction and this was found to reduce the residual stress by 25-40%. A relationship between {311} peaks widths and amount of cold compression was also observed.


Author(s):  
Gurinder Singh Brar ◽  
Yogeshwar Hari ◽  
Akhil Deep Ayri

Rivets are widely used as a means of fastening in airframe construction industry. Among the other types of fasteners riveted joints are preferred in such applications due to their permanence after installation and their economical advantages. In a riveted joint, it is known that residual stresses are present as a result of the installation process. Furthermore, during the flight of an aircraft, the fuselage comes across pressurization and depressurization cycle. During one flight pressurization-depressurization cycle is completed and such cycles are repeated throughout the service life of the aircraft. As a result, the panels and the rivets are subjected to fatigue type loading. The integrity of the joint must be maintained against this combination of service loads and the residual stresses. The present study is aimed to develop and analyze three-dimensional finite element model of riveted lap, and then the numerical analysis (SolidWorks Simulation) are carried out to calculate the residual stress values and fatigue values in the riveted lap joint under the effect of varying temperature. The result shows that the fatigue life varies inversely proportion to residual stresses whereas damage varies directly proportion to residual stresses. The maximum residual stress obtained is 292 MPa at temperature of 150°C and the minimum residual stress obtained is 15 MPa at temperature of −50°C. Maximum damage is 60% at 150°C and minimum is 8% at −50°C. Maximum life is 234346 cycles at −50°C and minimum life is 33111 cycles at 150°C.


Author(s):  
Ying Hong ◽  
Xuesheng Wang ◽  
Yan Wang ◽  
Zhao Zhang ◽  
Yong Han

Stainless steel 304 L tubes are commonly used in the fabrication of heat exchangers for nuclear power stations. The stress corrosion cracking (SCC) of 304 L tubes in hydraulically expanded tube-to-tubesheet joints is the main reason for the failure of heat exchangers. In this study, 304 L hydraulically expanded joint specimens were prepared and the residual stresses of a tube were evaluated with both an experimental method and the finite element method (FEM). The residual stresses in the outer and inner surfaces of the tube were measured by strain gauges. The expanding and unloading processes of the tube-to-tubesheet joints were simulated by the FEM. Furthermore, an SCC test was carried out to verify the results of the experimental measurement and the FEM. There was good agreement between the FEM and the experimental results. The distribution of the residual stress of the tube in the expanded joint was revealed by the FEM. The effects of the expansion pressure, initial tube-to-hole clearance, and yield strength of the tube on the residual stress in the transition zone that lay between the expanded and unexpanded region of the tube were investigated. The results showed that the residual stress of the expanded joint reached the maximum value when the initial clearance was eliminated. The residual stress level decreased with the decrease of the initial tube-to-hole clearance and yield strength. Finally, an effective method that would reduce the residual stress without losing tightness was proposed.


Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 479
Author(s):  
Yang Zhao ◽  
Fan Sun ◽  
Peng Jiang ◽  
Yongle Sun

The effects of surface roughness on the stresses in an alumina scale formed on a Fecralloy substrate are investigated. Spherical indenters were used to create indents with different radii and depths to represent surface roughness and then the roughness effect was studied comprehensively. It was found that the residual stresses in the alumina scale formed around the rough surface are almost constant and they are dominated by the curvature rather than the depth of the roughness. Oxidation changes the surface roughness. The edge of the indent was sharpened after oxidation and the residual stress there was released presumably due to cracking. The residual stresses in the alumina scale decrease with increase in oxidation time, while the substrate thickness has little effect, given that the substrate is thicker than the alumina scale. Furthermore, the effect of roughness on the oxide growth stress is analysed. This work indicates that the surface roughness should be considered for evaluation of stresses in coatings.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 182
Author(s):  
Suvi Santa-aho ◽  
Mika Kiviluoma ◽  
Tuomas Jokiaho ◽  
Tejas Gundgire ◽  
Mari Honkanen ◽  
...  

Additive manufacturing (AM) is a relatively new manufacturing method that can produce complex geometries and optimized shapes with less process steps. In addition to distinct microstructural features, residual stresses and their formation are also inherent to AM components. AM components require several post-processing steps before they are ready for use. To change the traditional manufacturing method to AM, comprehensive characterization is needed to verify the suitability of AM components. On very demanding corrosion atmospheres, the question is does AM lower or eliminate the risk of stress corrosion cracking (SCC) compared to welded 316L components? This work concentrates on post-processing and its influence on the microstructure and surface and subsurface residual stresses. The shot peening (SP) post-processing levelled out the residual stress differences, producing compressive residual stresses of more than −400 MPa in the AM samples and the effect exceeded an over 100 µm layer below the surface. Post-processing caused grain refinement and low-angle boundary formation on the sample surface layer and silicon carbide (SiC) residue adhesion, which should be taken into account when using the components. Immersion tests with four-point-bending in the heated 80 °C magnesium chloride solution for SCC showed no difference between AM and reference samples even after a 674 h immersion.


2016 ◽  
Vol 879 ◽  
pp. 1800-1806 ◽  
Author(s):  
M. Smith ◽  
L. Bichler ◽  
D. Sediako

Measurement of residual strains by neutron diffraction of linear friction welded Inconel® 718 (IN 718) superalloy acquired from a mid-service aero-engine disk was undertaken in this study. Residual strain and stress throughout the various weld regions including the heat affected zone (HAZ), thermomechanical affected zone (TMAZ) and dynamically recrystallized zone (DRX) were characterized. The residual stresses were observed to increase from the base material to the weld interface, with a peak stress at the weld interface in all orthogonal directions. The trends for residual stress across the weld are in agreement with other work published in literature for solid state welding of aerospace alloys, where high residual stresses were commonly reported at the weld interface.


2020 ◽  
Vol 64 (7) ◽  
pp. 1195-1212
Author(s):  
B. Lennart Josefson ◽  
R. Bisschop ◽  
M. Messaadi ◽  
J. Hantusch

Abstract The aluminothermic welding (ATW) process is the most commonly used welding process for welding rails (track) in the field. The large amount of weld metal added in the ATW process may result in a wide uneven surface zone on the rail head, which may, in rare cases, lead to irregularities in wear and plastic deformation due to high dynamic wheel-rail forces as wheels pass. The present paper studies the introduction of additional forging to the ATW process, intended to reduce the width of the zone affected by the heat input, while not creating a more detrimental residual stress field. Simulations using a novel thermo-mechanical FE model of the ATW process show that addition of a forging pressure leads to a somewhat smaller width of the zone affected by heat. This is also found in a metallurgical examination, showing that this zone (weld metal and heat-affected zone) is fully pearlitic. Only marginal differences are found in the residual stress field when additional forging is applied. In both cases, large tensile residual stresses are found in the rail web at the weld. Additional forging may increase the risk of hot cracking due to an increase in plastic strains within the welded area.


Author(s):  
Xian-Kui Zhu ◽  
Rick Wang

Mechanical dents often occur in transmission pipelines, and are recognized as one of major threats to pipeline integrity because of the potential fatigue failure due to cyclic pressures. With matured in-line-inspection (ILI) technology, mechanical dents can be identified from the ILI runs. Based on ILI measured dent profiles, finite element analysis (FEA) is commonly used to simulate stresses and strains in a dent, and to predict fatigue life of the dented pipeline. However, the dent profile defined by ILI data is a purely geometric shape without residual stresses nor plastic deformation history, and is different from its actual dent that contains residual stresses/strains due to dent creation and re-rounding. As a result, the FEA results of an ILI dent may not represent those of the actual dent, and may lead to inaccurate or incorrect results. To investigate the effect of residual stress or plastic deformation history on mechanics responses and fatigue life of an actual dent, three dent models are considered in this paper: (a) a true dent with residual stresses and dent formation history, (b) a purely geometric dent having the true dent profile with all stress/strain history removed from it, and (c) a purely geometric dent having an ILI defined dent profile with all stress/strain history removed from it. Using a three-dimensional FEA model, those three dents are simulated in the elastic-plastic conditions. The FEA results showed that the two geometric dents determine significantly different stresses and strains in comparison to those in the true dent, and overpredict the fatigue life or burst pressure of the true dent. On this basis, suggestions are made on how to use the ILI data to predict the dent fatigue life.


1983 ◽  
Vol 105 (3) ◽  
pp. 133-136 ◽  
Author(s):  
A. Israeli ◽  
J. Benedek

The production of precision parts requires manufacturing processes which produce low residual stresses. This study was designed to investigate the parametric relationship between machining processes and residual stress distribution. Sets of steel specimens were single point turned at different feeds. The residual stress profiles of these specimens were monitored, using a continuous etching technique. A “Specific Instability Potential” parameter, derived from the strain energy of the residual stresses, was found to relate directly to the machining parameters. It is suggested that the Specific Instability Potential can be used as a parameter for specifying processing operations.


Author(s):  
Abul Fazal M. Arif ◽  
Ahmad S. Al-Omari ◽  
Anwar K. Sheikh ◽  
Yagoub Al-Nassar ◽  
M. Anis

Double submerged spiral-welded pipe (SWP) is used extensively throughout the world for large-diameter pipelines. Fabrication-induced residual stresses in spiral welded pipe have received increasing attention in gas, oil and petrochemical industry. Several studies reported in the literature verify the critical role of residual stresses in the failure of these pipes. Therefore, it is important that such stresses are accounted for in safety assessment procedures such as the British R6 and BS7910. This can be done only when detailed information on the residual stress distribution in the component is known. In industry, residual stresses in spiral welded pipe are measured experimentally by means of destructive techniques known as Ring Splitting Test. In this study, statistical analysis and linear-regression modeling were used to study the effect of several structural, material and welding parameters on ring splitting test opening for spiral welded pipes. The experimental results were employed to develop an appropriate regression equation, and to predict the residual stress on the spiral welded pipes. It was found that the developed regression equation explains 36.48% of the variability in the ring opening. In the second part, a 3-D finite element model is presented to perform coupled-field analysis of the welding of spiral pipe. Using this model, temperature as well as stress fields in the region of the weld edges is predicted.


Sign in / Sign up

Export Citation Format

Share Document