scholarly journals Configuring adaptive PID-controllers of the automatic speed control system of the GTE

Author(s):  
K. E. Chertilin ◽  
V. D. Ivchenko

For non-stationary objects with parameters, which could be changed significantly during operation, using conventional controllers in the form of proportional-integraldifferential regulators may not provide the required quality of the system. Therefore, it is desirable to create an adaptive automatic control system with the structure and parameters of the control regulator that are purposefully changed to ensure the system adaptation, that is based on information about the properties of the object of regulation and external influences, to the changing operating conditions. The problem of designing adaptive systems is one of the most important in control theory and related fields. This is conditioned by two factors: the complexity of solving the problem as a whole and the presence of a large number of technically diverse situations that need to be adapted and optimized. In the paper, an adaptive system for the automatic control of the speed of a gas turbine engine, which includes a magnetic amplifier, a DC motor with a gearbox, a fuel supply valve and a tachogenerator, is developed. For adaptive control execution, three proportional-integral-differential controllers were proposed: "classic", fuzzy and neurofuzzy. The parameters of the "classic" controller were optimized using linear programming methods. The membership functions and the rule base were proposed for the fuzzy controller. An adaptation algorithm was selected for the neuro-fuzzy controller. Three controllers were used for three engine-operating modes: low-gas, cruiser and maximum during the computer simulation of the system. A comparative analysis of the quality of the three regulators was performed and it is based on the obtained transient characteristics. The derived results can be used in the development of automatic control systems for gas turbine engines.

2019 ◽  
Vol 30 (106) ◽  
pp. 169-177
Author(s):  
Y. P. Kondratenko ◽  
◽  
А. M. Topalov ◽  
O. V. Kozlov ◽  

Author(s):  
G. T. Kulakov ◽  
K. I. Artsiomenka

The article concerns the problem of structure-and-parametric optimization of a cascade automatic control system (CACS) by an example of a boiler power controller and a fuel controller. This CACS, which is a part of automatic control systems for power units, consists of two loops, viz. of an inner loop (which purpose is stabilization of the system) and an outer loop (designed for the adjustment) and, also, of two controller, viz. an outer controller (which is a basic one) provided for stabilization of the output value of the object (in our case, of the actual power unit capacity) and of an inner controller (which is an auxiliary one) provided to regulate fuel consumption. The internal controller builds up the control action with the aid of the boiler load controller of the power unit. As compared to single-loop automatic control systems, the cascade  system provides better quality of transient control due to the higher performance of the internal loop of the system. This advantage is especially noticeable when compensating for disturbances that come through the channel of regulating impact. The article presents two methods of setting, viz. the fuel controller and the boiler power controller. The application of these methods can improve the quality of power control and reduce fuel consumption in transient modes in comparison with the setting of these controllers of a typical power unit automatic power control system. The results of computer simulation of transient processes in CACS for input step surge and internal perturbation confirm the advantages of the methods are presented in this article.


Author(s):  
G. Kalimbetov ◽  
A. Toigozhinovа ◽  
W. Wojcik

Among the promising automatic control systems, logical-dynamic control systems that change both the structure and parameters of the control device using switches formed on the basis of a certain logical algorithm have proven themselves well. The use of logical algorithms as part of MACS subsystems for complex technical objects makes it possible to increase the static and dynamic accuracy of control due to purposeful qualitative and quantitative changes in the control signal. This approach will give the control system fundamentally new properties that allow to fully take into account the nature and dynamics of the movement of the control object. When developing existing logical control algorithms, the issues of their application for multi-connected and multifunctional objects control were not considered. Common to existing logical algorithms is that when switching the structure and/or changing parameters, only the dynamics of its own subsystem is taken into account, which is unacceptable in the case of multi-connected dynamic object control, since cross-links have a significant impact on the quality of control. Thus, the problem of synthesis of logical algorithms for multi-connected objects control is an actual theoretical and applied problem. Despite the considerable amount of research conducted in this area, the application of logical algorithms for complex multidimensional objects control is not sufficiently considered, and there is no unified design concept for this type of MACS, taking into account the required quality of functioning in various operating modes. In this regard, there is a need to synthesize algorithms for logical multi-connected control that form control signals in order to coordinate the actions of all separate MACS subsystems in accordance with new external conditions and operating modes. The problem under consideration determined the purpose of this work and the research objectives.


Author(s):  
M. Vesela ◽  
I. Klymenko ◽  
Y. Melnikova

To overcome the lack of information about the parameters of the driving cycle of the electric car, neural networks are used, which provide adaptive control that allows you to adapt. electric car to external operating conditions, as well as to compensate for inaccuracies in mathematical models. Use of iterative optimization of parameters allows to adjust optimum work of power plant of the electric car (PEC) in the course of its movement. This method allows you to use a single approach to study different processes, regardless of the parametric features of electric vehicles. To accelerate adaptation, the neurocontroller and neural network model are trained using a reference control model, which is either an optimal strategy or a strategy based on logical rules of choice, obtained by methodical programming for a given driving cycle. Based on the results of the research, an adaptation algorithm is proposed. The expressions given in the article allow to carry out adaptation of the power plant on the basis of hybrid to the current driving cycle on the basis of the concept of training of the neuro-fuzzy controller with reinforcement. The expressions given in the article allow to carry out adaptation of the power plant on the basis of hybrid to the current driving cycle on the basis of the concept of training of the neuro-fuzzy controller with reinforcement. The purpose of training the neuro-fuzzy controller is the formation of such control effects of the power plant, which would reduce the quadratic value of the assessment of the quality of management.


2012 ◽  
Vol 9 (2) ◽  
pp. 62-64
Author(s):  
E.V. Denisova ◽  
E.Sh. Nasibullaeva ◽  
M.A. Chernikova

The possibility of improving the control quality of the rotor speed of a gas turbine engine due to the introduction of a two-coordinate fuel metering unit is shown. The introduction of two controlled signals to the dosing needle and to the constant-differential valve will make it possible to constructively perform a "coarse" and "fine" control of the amount of fuel consumption while maintaining the specified accuracy with respect to the speed of rotation.


2017 ◽  
Vol 8 (3) ◽  
Author(s):  
Д. А. Шумигай ◽  
А. П. Ладанюк ◽  
Я. В. Смітюх

Quality of the automatic control is the basis of economic effect of industrial control systems. The appropriate regulator settings should be found to improve the quality of automated control systems, but improved accuracy results in the reduction of stability margin, that’s why operators try to reduce setttings in complex systems (ie, set the "weak setting"),so the system could worke in all modes. Controller’s "low (all-mode) tuning" is the main disadvantage of existing control systems, which reduces profits. Frequent changes of plant parameters are the prime cause of low quality tuning and reduced efficiency of control systems. These changes are caused by changeable mode of plants, loop interdependence in multidimensional systems. In terms of operating the only one way is to ease settings, achieving reduction of loop interdependence, ensuring adequate stability margin in all possible modes of operation. The quality of work with such tuning is obviously worse and the profit is less. The article presents possible approaches that can increase the efficiency of automatic control systems and describes the adaptation algorithm for PI controller based on an analysis of statistical data.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1257
Author(s):  
Alexey Dorokhov ◽  
Alexander Aksenov ◽  
Alexey Sibirev ◽  
Nikolay Sazonov ◽  
Maxim Mosyakov ◽  
...  

The roller and sieve machines most commonly used in Russia for the post-harvest processing of root and tuber crops and onions have a number of disadvantages, the main one being a decrease in the quality of sorting due to the contamination of working bodies, which increases the quantity of losses during sorting and storage. To obtain high-quality competitive production, it is necessary to combine a number of technological operations during the sorting process, such as dividing the material into classes and fractions by quality and size, as well as identifying and removing damaged products. In order to improve the quality of sorting of root tubers and onions by size, it is necessary to ensure the development of an automatic control system for operating and technological parameters, the use of which will eliminate manual sorting on bulkhead tables in post-harvest processing. To fulfill these conditions, the developed automatic control system must have the ability to identify the material on the sorting surface, taking into account external damage and ensuring the automatic removal of impurities. In this study, the highest sorting accuracy of tubers (of more than 91%) was achieved with a forward speed of 1.2 m/s for the conveyor of the sorting table, with damage to 2.2% of the tubers, which meets the agrotechnical requirements for post-harvest processing. This feature distinguishes the developed device from similar ones.


2021 ◽  
Vol 22 (10) ◽  
pp. 507-517
Author(s):  
Y. A. Bykovtsev

The article is devoted to solving the problem of analysis and synthesis of a control system with a fuzzy controller by the phase plane method. The nonlinear transformation, built according to the Sugeno fuzzy model, is approximated by a piecewise linear characteristic consisting of three sections: two piecewise linear and one piecewise constant. This approach allows us to restrict ourselves to three sheets of phase trajectories, each of which is constructed on the basis of a second-order differential equation. Taking this feature into account, the technique of "stitching" of three sheets of phase trajectories is considered and an analytical base is obtained that allows one to determine the conditions for "stitching" of phase trajectories for various variants of piecewise-linear approximation of the characteristics of a fuzzy controller. In view of the specificity of the approximated model of the fuzzy controller used, useful analytical relations are given, with the help of which it is possible to calculate the time of motion of the representing point for each section with the involvement of the numerical optimization apparatus. For a variant of the approximation of three sections, a technique for synthesizing a fuzzy controller is proposed, according to which the range of parameters and the range of input signals are determined, at which an aperiodic process and a given control time are provided. On the model of the automatic control system of the drive level of the mechatronic module, it is shown that the study of a fuzzy system by such an approximated characteristic of a fuzzy controller gives quite reliable results. The conducted studies of the influence of the degree of approximation on the quality of control show that the approximated characteristic of a fuzzy controller gives a slight deterioration in quality in comparison with the smooth characteristic of a fuzzy controller. Since the capabilities of the phase plane method are limited to the 2nd order of the linear part of the automatic control system, the influence of the third order on the dynamics of the system is considered using the example of a mechatronic module drive. It is shown that taking into account the electric time constant leads to overshoot within 5-10 %. Such overshoot can be eliminated due to the proposed recommendations for correcting the static characteristic of the fuzzy controller.


Author(s):  
Zhu (Julie) Meng ◽  
Robert J. Hoffa ◽  
Charles A. DeMilo ◽  
Todd T. Thamer

The combustion process in gas-turbine engines produces emissions, especially nitrogen oxides (NOx) and carbon monoxide (CO), which change dramatically with combustor operating conditions. As part of this study, the application of active feedback control technologies to reduce thermal NOx emissions is modeled numerically and demonstrated experimentally. A new optical flame sensor, designed by Ametek Power & Industrial Products, has been successfully implemented as the feedback element in a proof-of-concept control system used to minimize NOx emissions. The sensor consists of a robust mechanical package, as well as electronics suitable for severe gas-turbine environments. Results from system rig tests correlate closely to theoretical predictions, as described in literature and produced by a control system simulation model. The control system simulation model predicts the efficacy of controlling engine operating characteristics based on chemical luminescence of the OH radical. The model consists of a fuel pump and metering device, a fuel-air mixing scheme, a combustion model, the new ultraviolet (UV) feedback flame sensor, and a simple gain block. The input reference to the proportional emissions control is the fuel-to-air equivalence ratio, which is empirically correlated to the desired low level of NOx emissions while satisfying other operating conditions, such as CO emissions and power. Results from the closed-loop emissions control simulation and rig tests were analyzed to determine the capability of the UV flame sensor to measure and control the combustion process in a gas-turbine engine. The response characteristics, overshoot percentage, rise time, settling time, accuracy, resolution, and repeatability are addressed.


2019 ◽  
Vol 113 ◽  
pp. 01003
Author(s):  
Iacopo Rossi ◽  
Romain Caillere

The need to enhance flexibility on current power plant is linked to the strong penetration of non-dispatchable sources in the current energy network, which causes a dramatic need for ancillary services to sustain the grid operability. A framework including a micro Gas Turbine (mGT), a Heat Pump (HP) and a PCM Storage is considered to enhance plant flexibility while facing grid and price fluctuations during day operations. The system so composed is devoted to electrical energy production only. A proper use of the HP allows, for instance, to heat up the compressor intake temperature whilst the system is operating at minimum load. The system can then produce a lower amount of energy in order to be more competitive in the infra-day energy market. At the same time, the cold storage is charged and the stored energy can be later used to power up the system during the peak hours by cooling the compressor intake. This work presents then the installation of the control system devoted to the management and the control of such complex system. The test-bed is defined to test different operating conditions and to validate the operating framework of the whole compound.


Sign in / Sign up

Export Citation Format

Share Document