scholarly journals LPKF-LDS technology for the production of three-dimensional schemes on plastics

Author(s):  
V. S. Ivanov ◽  
D. A. Gladky ◽  
D. S. Vorunichev

A promising technology for the production of three-dimensional circuits on plastics, the scope of its current application and prospects for its further development in the radio-electronic industry are considered. The analysis of current opportunities and limitations is carried out. It is shown that the key component of the technology is the correct choice of thermoplastics with suitable characteristics for the intended object, taking into account the resistance to external factors. An analysis of the international and domestic regulatory framework for thermoplastics was conducted. This allowed to determine the key characteristics for 3D-MID-technology and to make a comparison. A classification is  proposed on the basis of the key characteristics of thermoplastics for making a decision when choosing materials on the market, taking into account the application in the radio-electronic industry using 3D-MID technology, which is currently either absent or not fully represented. Methods of testing materials for use in the production technology of three-dimensional circuits on plastics and ensuring the quality of manufacturing of radio engineering products, allowing to confirm the compliance of key parameters of materials are studied. The article considers the order of the build process with the application of the LPKF-LDS technology production of three-dimensional circuits on plastics, which allows building a sequence of processes with particular implementation as an example. The considered LPKF-LDS technology as part of the 3D-MID line is planned in the new laboratory “Threedimensional circuits on plastics and flexible media” at the Department of Design and Production of Radioelectronic Devices of the Institute of Radio Engineering and Telecommunications Systems of MIREA – Russian Technological University.

Author(s):  
Ольга Кондратьева ◽  
Olga Kondratyeva

This article discusses methods of assessment of the trunk "Customers" for the ISUP re-engineering. We have used two tools: • Current state assessment of service quality using tree chart of indicators on four trunks: Customers, Process, Owners and the State. • Action plan development based on the Kobayashi PROF methodology. Evaluation of the trunk "Customers" (q1) is conducted in three branches: P1 - functionality, P2 - convenience, P3 - emotional background. Functionality is evaluated by type of work and sufficient level of Reliability, Responsibility, Availability and Sociability of each of them in relation to all applications. Convenience is estimated by means of survey of customers by means of questioning on the website by criteria (leaves): comfort, the interface, conflict situations, feedback, emergency situations and functionality Emotional background is assessed by analyzing changes in the emotional background of communication and is based on the content analysis of the text. All messages from the user are considered to be text. The proposed tree-like information model of structure construction of indicators makes it possible to assess the quality of services in the field of ISUP support at the enterprises of the radio-electronic industry.


Author(s):  
S. Khadpe ◽  
R. Faryniak

The Scanning Electron Microscope (SEM) is an important tool in Thick Film Hybrid Microcircuits Manufacturing because of its large depth of focus and three dimensional capability. This paper discusses some of the important areas in which the SEM is used to monitor process control and component failure modes during the various stages of manufacture of a typical hybrid microcircuit.Figure 1 shows a thick film hybrid microcircuit used in a Motorola Paging Receiver. The circuit consists of thick film resistors and conductors screened and fired on a ceramic (aluminum oxide) substrate. Two integrated circuit dice are bonded to the conductors by means of conductive epoxy and electrical connections from each integrated circuit to the substrate are made by ultrasonically bonding 1 mil aluminum wires from the die pads to appropriate conductor pads on the substrate. In addition to the integrated circuits and the resistors, the circuit includes seven chip capacitors soldered onto the substrate. Some of the important considerations involved in the selection and reliability aspects of the hybrid circuit components are: (a) the quality of the substrate; (b) the surface structure of the thick film conductors; (c) the metallization characteristics of the integrated circuit; and (d) the quality of the wire bond interconnections.


Author(s):  
B. Carragher ◽  
M. Whittaker

Techniques for three-dimensional reconstruction of macromolecular complexes from electron micrographs have been successfully used for many years. These include methods which take advantage of the natural symmetry properties of the structure (for example helical or icosahedral) as well as those that use single axis or other tilting geometries to reconstruct from a set of projection images. These techniques have traditionally relied on a very experienced operator to manually perform the often numerous and time consuming steps required to obtain the final reconstruction. While the guidance and oversight of an experienced and critical operator will always be an essential component of these techniques, recent advances in computer technology, microprocessor controlled microscopes and the availability of high quality CCD cameras have provided the means to automate many of the individual steps.During the acquisition of data automation provides benefits not only in terms of convenience and time saving but also in circumstances where manual procedures limit the quality of the final reconstruction.


1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


Author(s):  
Radhika Theagarajan ◽  
Shubham Nimbkar ◽  
Jeyan Arthur Moses ◽  
Chinnaswamy Anandharamakrishnan

2011 ◽  
Vol 121-126 ◽  
pp. 1744-1748
Author(s):  
Xiang Yang Jin ◽  
Tie Feng Zhang ◽  
Li Li Zhao ◽  
He Teng Wang ◽  
Xiang Yi Guan

To determine the efficiency, load-bearing capacity and fatigue life of beveloid gears with intersecting axes, we design a mechanical gear test bed with closed power flow. To test the quality of its structure and predict its overall performance, we establish a three-dimensional solid model for various components based on the design parameters and adopt the technology of virtual prototyping simulation to conduct kinematics simulation on it. Then observe and verify the interactive kinematic situation of each component. Moreover, the finite element method is also utilized to carry out structural mechanics and dynamics analysis on some key components. The results indicate that the test bed can achieve the desired functionality, and the static and dynamic performance of some key components can also satisfy us.


2011 ◽  
Vol 148-149 ◽  
pp. 54-57
Author(s):  
Xiao Ping Lin ◽  
Yun Dong ◽  
Lian Wei Yang

The Al2O3 nano-films of different thicknesses (1~100nm) were successfully deposited on the monocrystalline Si surface by using ion beam sputtering deposition. The surface topography and the component of nano-films with different thickness were analyzed. The quality of the surface of nano-films was systematically studied. When the films’ thickness increase, the studies by atomic force microscope (AFM), X-ray photoelectron spectrum(XPS) show that the gathering grain continually grows up and transits from acerose cellula by two-dimensional growth to globularity by three-dimensional growth. The elements O, Al and Si were found on the surface of Al2O3 nano-films. With the thickness of the films increasing, the content of Al gradually increases and the intensity peak of Si wears off, the surface quality of the deposited films is ceaselessly improved


2010 ◽  
Vol 154-155 ◽  
pp. 1481-1484 ◽  
Author(s):  
Jun Zhong Guo ◽  
Jun Ping Yang

The on-off pressure mechanism has an important function to the printing press, the quality of which concerns the working performance of the printing machine and the quality of printed products directly. In this paper, the pneumatic on-off pressure mechanism is discussed; the work demand of order on-off pressure is analyzed. In addition, the three-dimensional digital model and the kinematic analysis process can be achieved on the basis of ADAMS software. What’s more, the on pressure value in the process of on pressure is derived from the kinematic analysis. Lastly, the relation between the motion of on-off pressure mechanism and cylinder’s angular displacement is analyzed, an important basis to the on-off pressure mechanism’s optimal design will be provided.


2014 ◽  
Vol 941-944 ◽  
pp. 1678-1681
Author(s):  
Hong Bing Wang ◽  
Zhi Rong Li ◽  
Chun Hua Sun ◽  
Yi Ping Zhang

Filling unbalance is a critical defect for injection mould. When the upper and lower covers of soap plastic box are produced by injection mold at the same time, filling unbalance in injection would appear because of the different dimensions of the two parts. For advancing the quality of the soap plastic box, the runner system is optimized with the filling analysis module and flow runner balance module of moldflow simulation software. The three-dimensional geometrical models of the two covers are constructed using Pro/e software. In moldflow the runner balance optimization of the soap box compounding cavity is analysis. The results indicate the optimized cross section of the runners can reduce the flow unbalance ratio from 3.38% to 0.73%, and the filling time and pressure can satisfy the demands. According to the analysis results moldflow is appropriate for runner balance design of the plastic products.


Sign in / Sign up

Export Citation Format

Share Document