Climate change in the Missouri central hardwood region : consequences for forest landscapes, and management strategies

2015 ◽  
Author(s):  
◽  
Jeffrey Eric Schneiderman

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Climate change may result in a change in the tree species present within forests. The Missouri Central Hardwood Region represents one area where these changes may occur. Due to the natural diversity of species and economic value of this area, it is beneficial to understand how climate change might affect trees currently present. Computer models (a human creation to help understand real world systems in a simplified manner) can be used to study the impact of climate change on forests. My objectives were to 1) understand how different forest impact models studying climate change compared to each other, 2) determine whether climate change or current timber harvest practices was more likely to change the characteristics of the forest, and 3) analyze land management alternatives to determine which was best at creating beneficial qualities for forests under climate change. For my first objective, I used a species distribution model and a process model, two models that use different analysis approaches, to assess climate change impacts on tree species, and compared the results. On a broad level, both models agreed, but when looking at the study area at smaller resolution, the models did not agree as well. For my second objective, I coupled a process model and forest landscape model. Although results showed there was variation based on species regarding whether climate or harvest had the greater impact, both usually had significant impacts on tree species. Results for my third objective indicated that multiple management approaches are necessary to manage future forests in a beneficial manner. My results have implications for future forest sustainability. Uncertainty exists regarding climate change's full impact, but with proper forest management and research these challenges can be reduced.

2015 ◽  
Vol 30 (10) ◽  
pp. 1879-1892 ◽  
Author(s):  
Jeffrey E. Schneiderman ◽  
Hong S. He ◽  
Frank R. Thompson ◽  
William D. Dijak ◽  
Jacob S. Fraser

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12001
Author(s):  
Jinbo Fu ◽  
Linlin Zhao ◽  
Changdong Liu ◽  
Bin Sun

As IUCN critically vulnerable species,the Indo-Pacific humpback dolphins (Sousa chinensis) have attracted great public attention in recent years. The threats of human disturbance and environmental pollution to this population have been documented extensively. However, research on the sensitivity of this species to climate change is lacking. To understand the effect of climate change on the potential distribution of Sousa chinensis, we developed a weighted ensemble model based on 82 occurrence records and six predictor variables (e.g., ocean depth, distance to shore, mean temperature, salinity, ice thickness, and current velocity). According to the true skill statistic (TSS) and the area under the receiver operating characteristic curve (AUC), our ensemble model presented higher prediction precision than most of the single-algorithm models. It also indicated that ocean depth and distance to shore were the most important predictors in shaping the distribution patterns. The projections for the 2050s and 2100s from our ensemble model indicated a severe adverse impact of climate change on the Sousa chinensis habitat. Over 75% and 80% of the suitable habitat in the present day will be lost in all representative concentration pathway emission scenarios (RCPS) in the 2050s and 2100s, respectively. With the increased numbers of records of stranding and deaths of Sousa chinensis in recent years, strict management regulations and conservation plans are urgent to safeguard the current suitable habitats. Due to habitat contraction and poleward shift in the future, adaptive management strategies, including designing new reserves and adjusting the location and range of reserves according to the geographical distribution of Sousa chinensis, should be formulated to minimize the impacts of climate change on this species.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shao-Ji Hu ◽  
Dong-Hui Xing ◽  
Zhi-Xian Gong ◽  
Jin-Ming Hu

Abstract Bhutanitis thaidina is an endemic, rare, and protected swallowtail in China. Deforestation, habitat fragmentation, illegal commercialised capture, and exploitation of larval food plants are believed to be the four major causes of population decline of B. thaidina in the recent decade. However, little attention was paid to the impact of climate change. This study used ecological niche factor analysis and species distribution model to analyse the current suitable areas for B. thaidina with BioClim variables as well as its future suitable areas under four future climate scenarios (represented by four Representative Concentration Pathways: RCP2.6, RCP4.5, RCP6.0, and RCP8.5). Statistical analysis was carried out to compare the possible area and altitude changes to the distribution of B. thaidina under changing climate. Our analyses showed that the suitable areas for B. thaidina are fragmented under the current climate, with four suitable centres in northwestern Yunnan, northeastern Yunnan and northwestern Guizhou, the western margin of Sichuan Basin, and Qinling mountains. Apart from further habitat fragmentation under climate change, slight range expansion (average 6.0–8.9%) was detected under the RCP2.6 and RCP4.5 scenarios, while more range contraction (average 1.3–26.9%) was detected under the RCP6.0 and RCP8.5 scenarios, with the two southern suitable centres suffering most. Also, a tendency of contraction (2,500–3,500 m) and upslope shift (~600 m) in suitable altitude range were detected. The findings of this study supported the climate-vulnerable hypothesis of B. thaidina, especially under future climate like the RCP6.0 and RCP8.5 scenarios, in terms of contraction in suitable areas and altitude ranges. Conservation priority should be given to northwestern Yunnan, northeastern Yunnan, and northwestern Guizhou to alleviate the stress of massive habitat loss and extinction. Refugial areas should be established in all four suitable centres to maintain genetic diversity of B. thaidina in China.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 429
Author(s):  
Yadong Xu ◽  
Yi Huang ◽  
Huiru Zhao ◽  
Meiling Yang ◽  
Yuqi Zhuang ◽  
...  

Cypripedium japonicum is an endangered terrestrial orchid species with high ornamental and medicinal value. As global warming continues to intensify, the survival of C. japonicum will be further challenged. Understanding the impact of climate change on its potential distribution is of great significance to conserve this species. In this study, we established an ensemble species distribution model based on occurrence records of C. japonicum and 13 environmental variables to predict its potential distribution under current and future climatic conditions. The results show that the true skill statistic (TSS), Cohen’s kappa statistic (Kappa), and the area under the receiver operating characteristic curve (AUC) values of the ensemble model were 0.968, 0.906, and 0.995, respectively, providing more robust predictions. The key environmental variables affecting the distribution of C. japonicum were the precipitation in the warmest quarter (Bio18) and the mean temperature in the driest quarter (Bio9). Under future climatic conditions, the total suitable habitat of C. japonicum will increase slightly and tend to migrate northwestward, but the highly suitable areas will be severely lost. By 2070, the loss of its highly suitable habitat area will reach 57.69–72.24% under representative concentration pathway (RCP) 4.5 and 8.5 respectively, and the highly suitable habitats in Zhejiang and Anhui will almost disappear. It is noteworthy that the highly suitable habitat of C. japonicum has never crossed the Qinba mountainous area during the migration process of the suitable habitat to the northwest. Meanwhile, as the best-preserved area of highly suitable habitat for C. japonicum in the future, the Qinba mountainous area is of great significance to protect the wild germplasm resources of C. japonicum. In addition, we found that most of the changes predicted for 2070 will already be seen in 2050; the problem of climate change may be more urgent than it is believed.


F1000Research ◽  
2019 ◽  
Vol 8 ◽  
pp. 978
Author(s):  
Taoufik Saleh Ksiksi ◽  
Remya K. ◽  
Mohamed T. Mousa ◽  
Shima K. Al-Badi ◽  
Salama K. Al Kaabi ◽  
...  

Background: The impact of climate change on selected plant species from the hyper-arid landscape of United Arab Emirates (UAE) was assessed through modeling of their habitat suitability and distribution. Calotropis procera, Prosopis cineraria and Ziziphus spina-christi were used for this study. The specific objectives of this study were to identify the current and future (for 2050s and 2070s) suitable habitats distribution using MaxEnt, an Ecological Envelope Model. Methods: The adopted method consists of extraction of current and future bioclimatic variables together with their land use cover and elevation for the study area. MaxEnt species distribution model was then used to simulate the distribution of the selected species. The projections are simulated for the current date, the 2050s and 2070s using Community Climate System Model version 4 with representative concentration pathway RCP4.5. Results: The current distribution model of all three species evolved with a high suitable habitat towards the north eastern part of the country. For C. procera, an area of 1775 km2 is modeled under highly suitable habitat for the current year, while it is expected to increase for both 2050s and 2070s. The current high suitability of P. cinararia was around an area of 1335 km2 and the future projection revealed an increase of high suitability habitats. Z. spina-christi showed a potential area of 5083 km2 under high suitability and it might increase in the future. Conclusions: Precipitation of coldest quarter (BIO19) had the maximum contribution for all the three species under investigation.


2021 ◽  
Vol 444 ◽  
pp. 109453
Author(s):  
Camille Van Eupen ◽  
Dirk Maes ◽  
Marc Herremans ◽  
Kristijn R.R. Swinnen ◽  
Ben Somers ◽  
...  

2010 ◽  
Vol 278 (1712) ◽  
pp. 1661-1669 ◽  
Author(s):  
David Alonso ◽  
Menno J. Bouma ◽  
Mercedes Pascual

Climate change impacts on malaria are typically assessed with scenarios for the long-term future. Here we focus instead on the recent past (1970–2003) to address whether warmer temperatures have already increased the incidence of malaria in a highland region of East Africa. Our analyses rely on a new coupled mosquito–human model of malaria, which we use to compare projected disease levels with and without the observed temperature trend. Predicted malaria cases exhibit a highly nonlinear response to warming, with a significant increase from the 1970s to the 1990s, although typical epidemic sizes are below those observed. These findings suggest that climate change has already played an important role in the exacerbation of malaria in this region. As the observed changes in malaria are even larger than those predicted by our model, other factors previously suggested to explain all of the increase in malaria may be enhancing the impact of climate change.


Author(s):  
Amy Kathleen Conley ◽  
Matthew D. Schlesinger ◽  
James G. Daley ◽  
Lisa K. Holst ◽  
Timothy G. Howard

Habitat loss, acid precipitation, and nonnative species have drastically reduced the number of Adirondack waterbodies occupied by round whitefish (Prosopium cylindraceum). The goal of this study was to 1) increase the probability of reintroduction success by modeling the suitability of ponds for reintroduction and 2) better understand the effects of different rates of pond reclamation. We created a species distribution model that identified 70 waterbodies that were physically similar to occupied ponds. The most influential variables for describing round whitefish habitat included trophic, temperature, and alkalinity classes; waterbody maximum depth; maximum air temperature; and surrounding soil texture and impervious surface. Next, we simulated population dynamics under a variety of treatment scenarios and compared the probability of complete extirpation using a modified Markov model. Under almost all management strategies, and under pressure from nonnative competitors like that observed in the past 30 years, the number of occupied ponds will decline over the next 100 years. However, restoring one pond every 3 years would result in a 99% chance of round whitefish persistence after 100 years.


Sign in / Sign up

Export Citation Format

Share Document