scholarly journals Production technology designed for heavy oil recovery of a marginal field offshore Vietnam

2016 ◽  
Vol 19 (1) ◽  
pp. 190-202
Author(s):  
Hung Viet Vu ◽  
Son Thai Tran

Production technology application in heavy oil production has been widely developed in industry over past decades in an effort to improve the ultimate recovery of this “difficult” hydrocarbon. Apart from thermal method, pumping technology makes remarkable advance by enlarging the draw-down created over the conventional gas-lift in several heavy oil projects. This paper presents the production technology design set out in the Field Development Plan (FDP) to enhance the wellbore lifting efficiency of a marginal heavy oil field offshore Vietnam. The finding of 200API viscous oil in Cuu Long Basin is weird to the geologist and its considerable large reserve challenges operator in thinking of a suitable development strategy to efficiently and economically extract this reserve. In so doing,a series of systematic technical studies has been purposely planned from the first encounter of heavy oil in wildcat well to the modelling study and asset design to accommodate the viscous fluid whilst optimizing the economic yield over the field life. Among them, the application of Electric Submersible Pump (ESP) was finally decided as the key driver to reinforce the well performance. As a result, the facility design at the surface such as surface electrical system coupledwith gas-lift back-up, sand control, chemical injection and so on, all integrated in one to boost production and prolong well life.

2020 ◽  
Vol 10 ◽  
pp. 41-48
Author(s):  
Tran Quoc Viet ◽  
Vu Viet Hung ◽  
Nguyen Hai An

The finding of heavy oil at Dong Do field of Cuu Long basin is a success in exploration. It could be considered as a large heavy oil field offshore Vietnam. Maximising reserve is a challenge to the operator when they think of a suitable development strategy to efficiently and economically exploit the field. Over the past decades, production technology application in heavy oil production has been widely developed in the industry. Apart from the thermal method, pumping technology makes remarkable advances by enlarging the drawdown created over the conventional gas lift in several heavy oil projects. This paper presents all the production technology solutions that apply to the marginal heavy oil field offshore Vietnam. One of the major solutions is the electric submersible pump (ESP) and gas-lift (GL) combination method to enhance the wellbore lifting efficiency. In doing so, a series of solutions to improve heavy oil recovery have been conducted from design to pilot test whilst optimising the economic yield over the field life. Among them, the application of ESP and GL combination plays as the key driver to reinforce good production performance. As a result, the design includes an electrical pump system coupled with GL back-up, all integrated with one to boost production and prolong well life. Beside that, closely monitoring and optimising is one factor to give the pump a longer life.


2021 ◽  
Author(s):  
Subba Ramarao Rachapudi Venkata ◽  
Nagaraju Reddicharla ◽  
Shamma Saeed Alshehhi ◽  
Indra Utama ◽  
Saber Mubarak Al Nuimi ◽  
...  

Abstract Matured hydrocarbon fields are continuously deteriorating and selection of well interventions turn into critical task with an objective of achieving higher business value. Time consuming simulation models and classical decision-making approach making it difficult to rapidly identify the best underperforming, potential rig and rig-less candidates. Therefore, the objective of this paper is to demonstrate the automated solution with data driven machine learning (ML) & AI assisted workflows to prioritize the intervention opportunities that can deliver higher sustainable oil rate and profitability. The solution consists of establishing a customized database using inputs from various sources including production & completion data, flat files and simulation models. Automation of Data gathering along with technical and economical calculations were implemented to overcome the repetitive and less added value tasks. Second layer of solution includes configuration of tailor-made workflows to conduct the analysis of well performance, logs, output from simulation models (static reservoir model, well models) along with historical events. Further these workflows were combination of current best practices of an integrated assessment of subsurface opportunities through analytical computations along with machine learning driven techniques for ranking the well intervention opportunities with consideration of complexity in implementation. The automated process outcome is a comprehensive list of future well intervention candidates like well conversion to gas lift, water shutoff, stimulation and nitrogen kick-off opportunities. The opportunity ranking is completed with AI assisted supported scoring system that takes input from technical, financial and implementation risk scores. In addition, intuitive dashboards are built and tailored with the involvement of management and engineering departments to track the opportunity maturation process. The advisory system has been implemented and tested in a giant mature field with over 300 wells. The solution identified more techno-economical feasible opportunities within hours instead of weeks or months with reduced risk of failure resulting into an improved economic success rate. The first set of opportunities under implementation and expected a gain of 2.5MM$ with in first one year and expected to have reoccurring gains in subsequent years. The ranked opportunities are incorporated into the business plan, RMP plans and drilling & workover schedule in accordance to field development targets. This advisory system helps in maximizing the profitability and minimizing CAPEX and OPEX. This further maximizes utilization of production optimization models by 30%. Currently the system was implemented in one of ADNOC Onshore field and expected to be scaled to other fields based on consistent value creation. A hybrid approach of physics and machine learning based solution led to the development of automated workflows to identify and rank the inactive strings, well conversion to gas lift candidates & underperforming candidates resulting into successful cost optimization and production gain.


2021 ◽  
Author(s):  
Ali Reham Al-Jabri ◽  
Rouhollah Farajzadeh ◽  
Abdullah Alkindi ◽  
Rifaat Al-Mjeni ◽  
David Rousseau ◽  
...  

Abstract Heavy oil reservoirs remain challenging for surfactant-based EOR. In particular, selecting fine-tuned and cost effective chemical formulations requires extensive laboratory work and a solid methodology. This paper reports a laboratory feasibility study, aiming at designing a surfactant-polymer pilot for a heavy oil field with an oil viscosity of ~500cP in the South of Sultanate of Oman, where polymer flooding has already been successfully trialed. A major driver was to design a simple chemical EOR method, to minimize the risk of operational issues (e.g. scaling) and ensure smooth logistics on the field. To that end, a dedicated alkaline-free and solvent-free surfactant polymer (SP) formulation has been designed, with its sole three components, polymer, surfactant and co-surfactant, being readily available industrial chemicals. This part of the work has been reported in a previous paper. A comprehensive set of oil recovery coreflood tests has then been carried out with two objectives: validate the intrinsic performances of the SP formulation in terms of residual oil mobilization and establish an optimal injection strategy to maximize oil recovery with minimal surfactant dosage. The 10 coreflood tests performed involved: Bentheimer sandstone, for baseline assessments on large plugs with minimized experimental uncertainties; homogeneous artificial sand and clays granular packs built to have representative mineralogical composition, for tuning of the injection parameters; native reservoir rock plugs, unstacked in order to avoid any bias, to validate the injection strategy in fully representative conditions. All surfactant injections were performed after long polymer injections, to mimic the operational conditions in the field. Under injection of "infinite" slugs of the SP formulation, all tests have led to tertiary recoveries of more than 88% of the remaining oil after waterflood with final oil saturations of less than 5%. When short slugs of SP formulation were injected, tertiary recoveries were larger than 70% ROIP with final oil saturations less than 10%. The final optimized test on a reservoir rock plug, which was selected after an extensive review of the petrophysical and mineralogical properties of the available reservoir cores, led to a tertiary recovery of 90% ROIP with a final oil saturation of 2%, after injection of 0.35 PV of SP formulation at 6 g/L total surfactant concentration, with surfactant losses of 0.14 mg-surfactant/g(rock). Further optimization will allow accelerating oil bank arrival and reducing the large PV of chase polymer needed to mobilize the liberated oil. An additional part of the work consisted in generating the parameters needed for reservoir scale simulation. This required dedicated laboratory assays and history matching simulations of which the results are presented and discussed. These outcomes validate, at lab scale, the feasibility of a surfactant polymer process for the heavy oil field investigated. As there has been no published field test of SP injection in heavy oil, this work may also open the way to a new range of field applications.


2018 ◽  
Vol 785 ◽  
pp. 46-51
Author(s):  
Ivan Nesterov ◽  
Marsel Kadyrov ◽  
Andrey Ponomarev ◽  
Denis Drugov ◽  
Mikhail Zavatskij

Bottomhole formation zone processing (BFZP) is performed at all phases of oil field development to restore and improve the filtration-capacity properties of the bottomhole formation zone to improve the oil yield. The choice of the BFZP technology is made basing on the study of the reasons for low well yield with account for the collector properties of productive sediments and rheological characteristics of the formation fluids, as well as a special geologic-geophysical and development-hydrodynamic study for the assessment of the porosity and permeability properties of BFZ. The research objective is to develop the criteria and assess the conditions for the application of bottomhole formation zone processing technologies for the upper Jurassic formations. Analysis of the results of laboratory and industrial research allowed offering the most efficient technologies for the influence on the upper Jurassic deposits.


2012 ◽  
Vol 268-270 ◽  
pp. 547-550
Author(s):  
Qing Wang Liu ◽  
Xin Wang ◽  
Zhen Zhong Fan ◽  
Jiao Wang ◽  
Rui Gao ◽  
...  

Liaohe oil field block 58 for Huancai, the efficiency of production of thickened oil is low, and the efficiency of displacement is worse, likely to cause other issues. Researching and developing an type of Heavy Oil Viscosity Reducer for exploiting. The high viscosity of W/O emulsion changed into low viscosity O/W emulsion to facilitate recovery, enhanced oil recovery. Through the experiment determine the viscosity properties of Heavy Oil Viscosity Reducer. The oil/water interfacial tension is lower than 0.0031mN•m-1, salt-resisting is good. The efficiency of viscosity reduction is higher than 90%, and also good at 180°C.


2014 ◽  
Author(s):  
Denis S. Loparev ◽  
Mikhail V. Chertenkov ◽  
George V. Buslaev ◽  
Asif A. Yusifov ◽  
Aleksey V. Klyavlin

2016 ◽  
Author(s):  
Ali Farog ◽  
Haytham A.Mustafa ◽  
Enas Mukhtar ◽  
Husham Elblaoula ◽  
Badreldin A. Yassin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document