scholarly journals Memory and Learning Improvement by Resveratrol and Probiotics via the ‎Gut-Brain Axis and Antioxidant Activity in Diabetic Rats

2021 ◽  
pp. 102-108

Background and Objectives: Diabetes affects the central nervous system associated with cognition, especially memory and learning. The present study aimed to investigate the effects of probiotics (living microorganisms that provide health benefits) and resveratrol (a polyphenol with potential antioxidant activity) combination on oxidative stress, glucagon-like peptide-1 (GLP-1), memory, and learning in diabetic rats. Materials and Methods: Male Wistar rats were randomly divided into five groups (six animals per group) of control, diabetic, probiotic-treated diabetic (50×109CFU/kg in drinking water), resveratrol-treated diabetic (10 mg/kg, oral gavage), as well as probiotics and resveratrol-treated diabetic. The treatment procedures lasted for four weeks, and a Shuttle Box test was then performed to evaluate memory and learning. At the end of the study, animals were sacrificed, and the hippocampus was removed to perform biochemical studies. Results: The levels of malondialdehyde and total oxidative status significantly decreased in the diabetic group treated with combined resveratrol and probiotics (P<0.05). Furthermore, the levels of superoxide dismutase, catalase, and glutathione peroxidase significantly increased in the hippocampus of the diabetic group treated with combined resveratrol and probiotics (P<0.05). According to the results, the combined therapy improved memory and learning (P<0.05). In addition, the level of GLP-1 increased in the treatment groups (P<0.05). Conclusion: Treatment with resveratrol and probiotics significantly normalized pyramidal cell densities in the hippocampus of diabetic rats. This combination also reduced oxidative stress and activated the gut-brain axis in diabetic animals.

Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 335
Author(s):  
Estefanía Bravo-Sánchez ◽  
Donovan Peña-Montes ◽  
Sarai Sánchez-Duarte ◽  
Alfredo Saavedra-Molina ◽  
Elizabeth Sánchez-Duarte ◽  
...  

Diabetes mellitus (DM) constitutes one of the public health problems today. It is characterized by hyperglycemia through a defect in the β-cells function and/or decreased insulin sensitivity. Apocynin has been tasted acting directly as an NADPH oxidase inhibitor and reactive oxygen species (ROS) scavenger, exhibiting beneficial effects against diabetic complications. Hence, the present study’s goal was to dissect the possible mechanisms by which apocynin could mediate its cardioprotective effect against DM-induced oxidative stress. Male Wistar rats were assigned into 4 groups: Control (C), control + apocynin (C+A), diabetes (D), diabetes + apocynin (D+A). DM was induced with streptozotocin. Apocynin treatment (3 mg/kg/day) was applied for 5 weeks. Treatment significantly decreased blood glucose levels and insulin resistance in diabetic rats. In cardiac tissue, ROS levels were higher, and catalase enzyme activity was reduced in the D group compared to the C group; the apocynin treatment significantly attenuated these responses. In heart mitochondria, Complexes I and II of the electron transport chain (ETC) were significantly enhanced in the D+A group. Total glutathione, the level of reduced glutathione (GSH) and the GSH/ oxidized glutathione (GSSG) ratio were increased in the D+A group. Superoxide dismutase (SOD) and the glutathione peroxidase (GSH-Px) activities were without change. Apocynin enhances glucose uptake and insulin sensitivity, preserving the antioxidant defense and mitochondrial function.


2018 ◽  
Vol 23 ◽  
pp. 2515690X1879605 ◽  
Author(s):  
Nourollah Rezaei ◽  
Tahereh Mardanshahi ◽  
Majid Malekzadeh Shafaroudi ◽  
Saeed Abedian ◽  
Hamid Mohammadi ◽  
...  

The present study was designed to investigate the antioxidant property of l-carnitine (LC) on serum levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone (TH) and testis oxidative stress in streptozotocin (STZ)-induced diabetic rats. The rats were divided into the following groups: group I, control; group II, LC 100 mg/kg/d; group III, diabetic; and groups IV to VI, diabetic rats treated with 50, 100, and 200 mg/kg/d of LC, respectively. Daily injections were given intraperitoneally for 7 weeks. At the end of experimental period, after sacrificing the rats, FSH, LH, TH, total antioxidant capacity (TAC), malondialdehyde (MDA), glutathione (GSH), catalase (CAT), mitochondrial function (MTT), protein carbonyl (PC), and reactive oxygen species (ROS) levels were measured. STZ caused an elevation of MDA, ROS, and PC ( P < .001) with reduction of GSH, CAT, TAC, and MTT ( P < .001) in the serum levels. Group VI had significantly increased FSH, LH, and TH levels versus the untreated diabetic group ( P < .001). Although groups V and VI significantly decreased MDA ( P < .001), PC ( P < .01), and ROS ( P < .01) compared with the untreated diabetic group; only in group VI, the activity of GSH ( P < .001), CAT ( P < .01), TAC ( P < .001), and MTT ( P < .001) significantly increased. The results of the present study suggest that LC decreased diabetes-induced oxidative stress complications and also improved serum level of FSH, LH, and TH by reducing levels of lipid peroxidation and increasing antioxidant enzymes.


2016 ◽  
Vol 29 (suppl 1) ◽  
pp. 3-7 ◽  
Author(s):  
Cacio Ricardo WIETZYCOSKI ◽  
João Caetano Dallegrave MARCHESINI ◽  
Sultan AL-THEMYAT ◽  
Fabiola Shons MEYER ◽  
Manoel Roberto Maciel TRINDADE

ABSTRACT Background: Type 2 Diabetes Mellitus is a multifactorial syndrome with severe complications. Oxidative stress is accepted as a causal factor of chronic complications Aim: To demonstrate alterations in oxidative stress after metabolic surgery. Methods: Twenty-four 2-day-old Wistar rats were used. In 16, Type 2 Diabetes Mellitus was induced by 100 mg/kg streptozotocin injection. The development of diabetes was confirmed after 10 weeks using an oral glucose tolerance test. Eight diabetic rats composed the diabetic surgical group; the remaining eight composed the diabetic group. Eight animals in which diabetes was not induced formed the clinical control group. The Marchesini technique was used in the diabetic surgical group. After 90 days, the rats were sacrificed, and the oxidative stress markers were measured. Results: Thiobarbituric acid reactive substances, superoxide dismutase and catalase were significantly reduced in the diabetic surgical group compared to the diabetic group. Conclusion: The duodenojejunostomy was effective in controlling the exacerbated oxidative stress present in diabetic rats.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Chonlathip Thipkaew ◽  
Jintanaporn Wattanathorn ◽  
Supaporn Muchimapura

In this study, quercetin-loaded zein-based nanofibers were developed using electrospinning technique. The therapeutic effect of these quercetin-loaded nanofibers on neuropathy in streptozotocin- (STZ-) induced diabetes in rats was assessed. Diabetic condition was induced in male Wistar rats by STZ, after which a crush injury of the right sciatic nerve was performed to induce mononeuropathy. Functional recovery was assessed using walking track analysis, measurements of foot withdrawal reflex, nerve conduction velocity, and morphological analysis. The oxidative stress status and the ratio of phosphorylated extracellular recognition kinase (pERK)/extracellular recognition kinase (ERK) expression in the nerve lesion were also assessed in order to elucidate the potential mechanisms involved. Results showed that quercetin-loaded zein-based nanofibers slightly enhanced functional recovery from neuropathy in STZ-diabetic rats. The potential mechanism might partially involve improvements in oxidative stress status and the ratio of pERK/ERK expression in the nerve lesion.


2015 ◽  
Vol 62 (2) ◽  
pp. 13-19
Author(s):  
Urmila Jarouliya ◽  
Anish Zacharia ◽  
Raj K. Keservani ◽  
Godavarthi B.K.S Prasad

Abstract Diabetes mellitus is a metabolic disorder characterised by hyperglycemia and oxidative stress. The aim of the present study is to explore the antioxidant effect of Spirulina maxima in rat model along with the histopathological observations. Diabetes was induced by feeding 10% fructose solution orally to Wistar rats (n = 6) for 30 days, analysed for plasma blood glucose and the markers of the oxidative stress [catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH) and thiobarbituric acid reactive substances (TBARS)]. These biochemical studies were associated with histopathological examination of liver and kidney sections. The microalga Spirulina maxima being rich in proteins and other essential nutrients is widely used as a food supplement. S. maxima at a dose of 5 and 10% per kg and the metformin (500 mg/kg) as reference drug were given orally for 30 days to the diabetic rats. Diabetic rats showed significant (p < 0.001) elevations in plasma blood glucose, thiobarbituric acid-reactive substances and significant reduction in catalase, superoxide dismutase and reduced glutathione activity. Oral administration of 5 and 10% aqueous extract of S. maxima for 30 days restored not only of blood glucose levels but also markers of oxidative stress. Histopathological observations of tissues manifested that the S. maxima administration had the protective and therapeutic effects against fructose-induced abnormalities in diabetic rats. It is concluded that S. maxima is effective in reinstating the antioxidant activity in addition to its antidiabetic effect in type 2 diabetic rats.


2018 ◽  
Vol 238 (1) ◽  
pp. 47-60 ◽  
Author(s):  
Sheng-Gao Tang ◽  
Xiao-Yu Liu ◽  
Ji-Ming Ye ◽  
Ting-Ting Hu ◽  
Ying-Ying Yang ◽  
...  

Diabetes-induced injury of myocardium, defined as diabetic cardiomyopathy (DCM), accounts for significant mortality and morbidity in diabetic population. Alleviation of DCM by a potent drug remains considerable interests in experimental and clinical researches because hypoglycemic drugs cannot effectively control this condition. Here, we explored the beneficial effects of isosteviol sodium (STVNa) on type 1 diabetes-induced DCM and the potential mechanisms involved. Male Wistar rats were induced to diabetes by injection of streptozotocin (STZ). One week later, diabetic rats were randomly grouped to receive STVNa (STZ/STVNa) or its vehicle (STZ). After 11 weeks of treatment or 11 weeks treatment following 4 weeks of removal of the treatment, the cardiac function and structure were evaluated and related mechanisms were investigated. In diabetic rats, oxidative stress, inflammation, blood glucose and plasma advanced glycation end products (AGEs) were significantly increased, whereas superoxide dismutase 2 (SOD-2) expression and activity were decreased. STVNa treatment inhibited cardiac hypertrophy, fibrosis and inflammation, showed similar ratio of heart to body weight and antioxidant capacities almost similar to the normal controls, which can be sustained at least 4 weeks. Moreover, STVNa inhibited diabetes-inducted stimulation of both extracellular signal-regulated kinase (ERK) and nuclear factor κB (NF-κB) signal pathways. However, blood glucose, plasma AGE and insulin levels were not altered by STVNa treatment. These results indicate that STVNa may be developed into a potent therapy for DCM. The mechanism underlying this therapeutic effect involves the suppression of oxidative stress and inflammation by inhibiting ERK and NF-κB without changing blood glucose or AGEs.


2018 ◽  
Vol 96 (9) ◽  
pp. 963-969 ◽  
Author(s):  
Davood Hasanvand ◽  
Iraj Amiri ◽  
Sara Soleimani Asl ◽  
Massoud Saidijam ◽  
Nooshin Shabab ◽  
...  

CeO2 nanoparticles (CNPs) as effective ROS scavengers exhibit potent antioxidant activity. In this study the effect of CNPs investigated was on HO-1, NQO1, and GCLC expression in the streptozotocin (STZ)-induced diabetic rats. Twenty-four male Wistar rats were divided into 4 groups: controls did not receive any treatment; diabetic rats received STZ (60 mg/kg daily); CNPs group received CNPs 30 mg/kg daily for 2 weeks; and rats in STZ + CNPs group received CNPs 30 mg/kg daily for 2 weeks following STZ injection. Oxidative stress was evaluated by measurement of total antioxidant capacity (TAC) and total oxidative status (TOS levels). HO-1, NQO1, and GCLC expression was measured using quantitative real-time PCR. Following STZ injection, significant lower levels of TAC and higher levels of TOS were observed. CNPs could alleviate deleterious effects of diabetes through the enhancement of TAC levels and a significant decline in TOS levels. HO-1, NQO1, and GCLC expression in the diabetic rats were lower than controls. HO-1, NQO1, and GCLC was upregulated in the diabetic rats treated with CNPs. There were significant correlations between NQO1 and GCLC, NQO1 and HO-1, and between HO-1 and GCLC expression. Moreover, Nrf2 was associated with NQO1, GCLC, and HO-1 expression. CNPs as Nrf2 upregulator confer protection against oxidative stress in the testes of STZ-induced diabetic rats by upregulating HO-1, GCLC, and NQO1 cytoprotective genes.


2016 ◽  
Vol 94 (12) ◽  
pp. 1298-1303 ◽  
Author(s):  
Shin Sato ◽  
Saori Kataoka ◽  
Akane Kimura ◽  
Yuuka Mukai

Diabetic kidney disease is associated with oxidative stress, inflammation, and autophagy. The aim of this study was to investigate the effect of azuki bean (Vigna angularis) extract (ABE) on oxidative stress and autophagy in the kidneys of diabetic rats. Streptozotocin (STZ)-induced diabetic rats received 0, 10, or 40 mg/kg of ABE orally for 4 weeks, whereas vehicle-injected control rats received distilled water. Level of plasma glutathione and expression of heme oxygenase-1 (HO-1), p47phox (NADPH oxidase subunit), and markers associated with autophagy were examined. The glutathione level in the 40 mg/kg ABE-treated diabetic group (ABE-40 group) was higher than that of the untreated diabetic group (ABE-0 group). The HO-1 and p47phox protein expression levels of the ABE-40 group were lower (47% and 33%, respectively) than those of the ABE-0 group. The level of light chain 3B II (LC3B-II) was higher in the ABE-40 group than in the ABE-0 group. Protein levels of p62/sequestosome 1 (p62) in the ABE-40 group were lower than those in the ABE-0 group. Our results suggest that ABE may attenuate STZ-induced diabetic kidney injury by suppressing oxidative stress and (or) by upregulating autophagy.


Medicines ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 78 ◽  
Author(s):  
Erna Bach ◽  
Edgar Hi ◽  
Ana Martins ◽  
Paloma Nascimento ◽  
Nilsa Wadt

Background:Ganoderma lucidum (Leyss. Ex. Fr) Karst is a basidiomycete mushroom that has been used for many years as a food supplement and medicine. In Brazil, National Health Surveillance Agency (ANVISA) classified Ganoderma lucidum as a nutraceutical product. The objective of the present work was to observe the effects of an extract from Ganoderma lucidum in rats treated with streptozotocin, and an agent that induces diabetes. Method: Male Wistar rats were obtained from the animal lodging facilities of both University Nove de Julho (UNINOVE) and Lusiada Universitary Center (UNILUS) with approval from the Ethics Committee for Animal Research. Animals were separated into groups: (1) C: Normoglycemic control water; (2) CE: Normoglycemic control group that received hydroethanolic extract (GWA); (3) DM1 + GWA: Diabetic group that received extract GWA; and (4) DM1: Diabetic group that received water. The treatment was evaluated over a 30-day period. Food and water were weighted, and blood plasma biochemical analysis performed. Results: G. lucidum extract contained beta-glucan, proteins and phenols. Biochemical analysis indicated a decrease of plasma glycemic and lipid levels in DM rats induced with streptozotocin and treated with GWA extract. Histopathological analysis from pancreas of GWA-treated DM animals showed preservation of up to 50% of pancreatic islet total area when compared to the DM control group. In plasma, Kyn was present in diabetic rats, while in treated diabetic rats more Trp was detected. Conclusion: Evaluation from G. lucidum extract in STZ-hyperglycemic rats indicated that the extract possesses hypoglycemic and hypolipidemic activities. Support: Proj. CNPq 474681/201.


Sign in / Sign up

Export Citation Format

Share Document