scholarly journals Temporal Dynamics of the Neural Response to Drug Cues: An fMRI Study among Methamphetamine Users

Author(s):  
Mohamad B. Soleymani ◽  
◽  
Arshiya Sangchooli ◽  
Mitra Ebrahimpoor ◽  
Mohamad A. Najafi ◽  
...  

Objective: Cue-induced craving is central to addictive disorders. Most cue-reactivity fMRI studies are analysed statically and report averaged signals, disregarding the dynamic nature of craving and task fatigue. Methods: Thirty-two early abstinent methamphetamine users underwent fMRI-scanning while viewing visual methamphetamine cues. A Craving>Neutral contrast was obtained in regions of interest. To explore changes over time, the pre-processed signal was divided into three intervals. Contrast estimates were calculated within each interval, and were compared using ANOVA followed by post hoc t-tests. The results were compared with those from a static analysis across all blocks. Results: A priori expected activations in the prefrontal cortex, insula and striatum not detected by static analysis were discovered by the dynamic analysis. Post hoc tests revealed distinct temporal activation patterns in several regions. Most showed rapid activation (including both ventral/dorsal striata and most regions in the prefrontal, insular and cingulate cortices) whereas some had delayed activation (the right anterior insula, left middle frontal gyrus, and left dorsal anterior cingulate cortex). Conclusions: This study provides preliminary insights into the temporal dynamicity of cue-reactivity, and the potential of a conventional blocked-design task to consider it using a simple dynamic analysis. We highlight regional activations that were only uncovered by a dynamic analysis, and discuss the interesting and theoretically expected early versus late regional activation patterns. Rapidly activated regions are mostly those involved in the earlier stages of cue-reactivity, while regions with later activation participate in cognitive functions relevant later, such as reappraisal, interoception and executive control.

2020 ◽  
Vol 10 (3) ◽  
pp. 136 ◽  
Author(s):  
Claudio Imperatori ◽  
Chiara Massullo ◽  
Giuseppe Alessio Carbone ◽  
Angelo Panno ◽  
Marta Giacchini ◽  
...  

An increasing body of experimental data have suggested that aberrant functional interactions between large-scale networks may be the most plausible explanation of psychopathology across multiple mental disorders, including substance-related and addictive disorders. In the current research, we have investigated the association between problematic cannabis use (PCU) and triple-network electroencephalographic (EEG) functional connectivity. Twelve participants with PCU and 24 non-PCU participants were included in the study. EEG recordings were performed during resting state (RS). The exact Low-Resolution Electromagnetic Tomography software (eLORETA) was used for all EEG analyses. Compared to non-PCU, PCU participants showed an increased delta connectivity between the salience network (SN) and central executive network (CEN), specifically, between the dorsal anterior cingulate cortex and right posterior parietal cortex. The strength of delta connectivity between the SN and CEN was positively and significantly correlated with higher problematic patterns of cannabis use after controlling for age, sex, educational level, tobacco use, problematic alcohol use, and general psychopathology (rp = 0.40, p = 0.030). Taken together, our results show that individuals with PCU could be characterized by a specific dysfunctional interaction between the SN and CEN during RS, which might reflect the neurophysiological underpinnings of attentional and emotional processes of cannabis-related thoughts, memories, and craving.


2012 ◽  
Vol 43 (7) ◽  
pp. 1533-1542 ◽  
Author(s):  
R. J. Herringa ◽  
M. L. Phillips ◽  
J. C. Fournier ◽  
D. M. Kronhaus ◽  
A. Germain

BackgroundPrior studies of adult post-traumatic stress disorder (PTSD) suggest abnormal functioning of prefrontal and limbic regions. Cumulative childhood and adult trauma exposures are major risk factors for developing adult PTSD, yet their contribution to neural dysfunction in PTSD remains poorly understood. This study aimed to examine the neural correlates of childhood and adult trauma exposure and post-traumatic stress symptoms (PTSS) within a single model.MethodMedication-free male combat veterans (n = 28, average age 26.6 years) with a wide range of PTSS were recruited from the community between 2010 and 2011. Subjects completed an emotional face-morphing task while undergoing functional magnetic resonance imaging (fMRI). Clinical ratings included the Clinician-Administered PTSD Scale (CAPS), Childhood Trauma Questionnaire (CTQ) and Combat Exposure Scale (CES). A priori regions were examined through multivariate voxelwise regression in SPM8, using depressive symptoms and IQ as covariates.ResultsIn the angry condition, CAPS scores correlated positively with activation in the medial prefrontal cortex [mPFC; Brodmann area (BA) 10, z = 3.51], hippocampus (z = 3.47), insula (z = 3.62) and, in earlier blocks, the amygdala. CES and CTQ correlated positively with activation in adjacent areas of the dorsal anterior cingulate cortex (dACC; BA 32, z = 3.70 and BA 24, z = 3.88 respectively). In the happy condition, CAPS, CTQ and CES were not correlated significantly with activation patterns.ConclusionsdACC activation observed in prior studies of PTSD may be attributable to the cumulative effects of childhood and adult trauma exposure. By contrast, insula, hippocampus and amygdala activation may be specific to PTSS. The specificity of these results to threat stimuli, but not to positive stimuli, is consistent with abnormalities in threat processing associated with PTSS.


2018 ◽  
Vol 49 (5) ◽  
pp. 852-860 ◽  
Author(s):  
Jiao Li ◽  
Xujun Duan ◽  
Qian Cui ◽  
Huafu Chen ◽  
Wei Liao

AbstractBackgroundMajor depressive disorder (MDD) is associated with high risk of suicide. Conventional neuroimaging works showed abnormalities of static brain activity and connectivity in MDD with suicidal ideation (SI). However, little is known regarding alterations of brain dynamics. More broadly, it remains unclear whether temporal dynamics of the brain activity could predict the prognosis of SI.MethodsWe included MDD patients (n = 48) with and without SI and age-, gender-, and education-matched healthy controls (n = 30) who underwent resting-state functional magnetic resonance imaging. We first assessed dynamic amplitude of low-frequency fluctuation (dALFF) – a proxy for intrinsic brain activity (iBA) – using sliding-window analysis. Furthermore, the temporal variability (dynamics) of iBA was quantified as the variance of dALFF over time. In addition, the prediction of the severity of SI from temporal variability was conducted using a general linear model.ResultsCompared with MDD without SI, the SI group showed decreased brain dynamics (less temporal variability) in the dorsal anterior cingulate cortex, the left orbital frontal cortex, the left inferior temporal gyrus, and the left hippocampus. Importantly, these temporal variabilities could be used to predict the severity of SI (r = 0.43, p = 0.03), whereas static ALFF could not in the current data set.ConclusionsThese findings suggest that alterations of temporal variability in regions involved in executive and emotional processing are associated with SI in MDD patients. This novel predictive model using the dynamics of iBA could be useful in developing neuromarkers for clinical applications.


2021 ◽  
Vol 15 ◽  
Author(s):  
Diego Mac-Auliffe ◽  
Benoit Chatard ◽  
Mathilde Petton ◽  
Anne-Claire Croizé ◽  
Florian Sipp ◽  
...  

Dual-tasking is extremely prominent nowadays, despite ample evidence that it comes with a performance cost: the Dual-Task (DT) cost. Neuroimaging studies have established that tasks are more likely to interfere if they rely on common brain regions, but the precise neural origin of the DT cost has proven elusive so far, mostly because fMRI does not record neural activity directly and cannot reveal the key effect of timing, and how the spatio-temporal neural dynamics of the tasks coincide. Recently, DT electrophysiological studies in monkeys have recorded neural populations shared by the two tasks with millisecond precision to provide a much finer understanding of the origin of the DT cost. We used a similar approach in humans, with intracranial EEG, to assess the neural origin of the DT cost in a particularly challenging naturalistic paradigm which required accurate motor responses to frequent visual stimuli (task T1) and the retrieval of information from long-term memory (task T2), as when answering passengers’ questions while driving. We found that T2 elicited neuroelectric interferences in the gamma-band (>40 Hz), in key regions of the T1 network including the Multiple Demand Network. They reproduced the effect of disruptive electrocortical stimulations to create a situation of dynamical incompatibility, which might explain the DT cost. Yet, participants were able to flexibly adapt their strategy to minimize interference, and most surprisingly, reduce the reliance of T1 on key regions of the executive control network-the anterior insula and the dorsal anterior cingulate cortex-with no performance decrement.


2021 ◽  
Author(s):  
Amirhossein Dakhili ◽  
Arshiya Sangchooli ◽  
Sara Jafakesh ◽  
Mehran Zare-Bidoky ◽  
Ghazaleh Soleimani ◽  
...  

Background: Drug-related cue-reactivity, dysfunctional negative emotion processing, and response-disinhibition constitute three core aspects of methamphetamine use disorder (MUD). These phenomena have been studied independently, but the neuroscientific literature on their interaction in addictive disorders remains scant. Methods: fMRI data were collected from 62 individuals with MUD when responding to the geometric Go or No-Go cues superimposed over blank, neutral, negative-emotional and drug-related background images. Neural correlates of drug and negative-emotional cue-reactivity, response-inhibition, and response-inhibition during drug and negative-emotional blocks were estimated, and methamphetamine cue-reactivity was compared between MUDs and 23 healthy controls (HCs). Relationships between clinical and behavioral characteristics and observed activations were subsequently investigated. Results: MUDs had longer reaction times and more errors in drug and negative-emotional blocks compared to neutral and blank ones. MUDs showed higher drug cue-reactivity than HCs across prefrontal regions, fusiform gyrus, and visual cortices (Z>3.1, p-corrected<0.05). Response-inhibition was associated with activations in the precuneus, inferior parietal lobule, and anterior cingulate, temporal and inferior frontal gyri (Z>3.1, p-corrected<0.05). Response-inhibition in drug cue blocks coincided with higher activations in the visual cortex and lower activations in the paracentral lobule and superior and inferior frontal gyri, while inhibition during negative-emotional blocks led to higher superior parietal, fusiform, and lateral occipital activations (Z>3.1, p-corrected<0.05). Conclusion: Higher visual cortical activations and lower parietal and prefrontal activations during drug-related response-inhibition suggest the down-regulation of inhibitory regions and up-regulation of bottom-up drug cue-reactivity. Our results suggest that drug and negative-emotional cue-reactivity influence response-inhibition, and the study of these interactions may aid mechanistic understandings of addiction and biomarker discovery.


2021 ◽  
Author(s):  
Elisabeth Schreuders ◽  
Mariet van Buuren ◽  
Reubs J Walsh ◽  
Hester Sijtsma ◽  
Miriam Hollarek ◽  
...  

Early adolescence may be an important period for developing sensitivity to uncooperative behavior. With this functional magnetic resonance imaging study, we examined longitudinal changes in trusting behavior and their neural correlates in regions of interest (ROIs) selected a priori: the medial prefrontal cortex (mPFC), dorsal anterior cingulate cortex (dACC), left anterior insula (AI), bilateral ventral striatum, and right dorsal striatum. Participants played the investor in a Trust Game with an uncooperative trustee (an anthropomorphic cartoon) three times, with one year between each wave. We preregistered our hypotheses and analytic plan. In total, 160 scan sessions of 77 participants (age at wave 1: M=13.89) were included in the analyses. First, we examined changes in trusting behavior involving an uncooperative other, and showed that participants’ investments decreased with wave. Next, we examined whether the investment and repayment phase yielded enhanced activity in the ROIs. In each phase we observed increased activity in the mPFC, dACC, and dorsal striatum, but no effects were found in the bilateral ventral striatum (and AI did not reach significance after multiple comparisons correction). Finally, we examined whether ROI activity changed with wave. During the repayment phase, dorsal striatum activity increased with wave (although this finding did not survive Bonferroni correction, it closely approached our threshold for significance). Together, these results indicate that young adolescents become increasingly responsive to uncooperative behavior; that trust behavior robustly enhanced activity in brain regions previously related to trust and decision-making in social context; and increased involvement of dorsal striatum across early adolescence.


2021 ◽  
Vol 7 (15) ◽  
pp. eabf6780
Author(s):  
Corinde E. Wiers ◽  
Leandro F. Vendruscolo ◽  
Jan-Willem van der Veen ◽  
Peter Manza ◽  
Ehsan Shokri-Kojori ◽  
...  

Individuals with alcohol use disorder (AUD) show elevated brain metabolism of acetate at the expense of glucose. We hypothesized that a shift in energy substrates during withdrawal may contribute to withdrawal severity and neurotoxicity in AUD and that a ketogenic diet (KD) may mitigate these effects. We found that inpatients with AUD randomized to receive KD (n = 19) required fewer benzodiazepines during the first week of detoxification, in comparison to those receiving a standard American (SA) diet (n = 14). Over a 3-week treatment, KD compared to SA showed lower “wanting” and increased dorsal anterior cingulate cortex (dACC) reactivity to alcohol cues and altered dACC bioenergetics (i.e., elevated ketones and glutamate and lower neuroinflammatory markers). In a rat model of alcohol dependence, a history of KD reduced alcohol consumption. We provide clinical and preclinical evidence for beneficial effects of KD on managing alcohol withdrawal and on reducing alcohol drinking.


Cybersecurity ◽  
2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Roee S. Leon ◽  
Michael Kiperberg ◽  
Anat Anatey Leon Zabag ◽  
Nezer Jacob Zaidenberg

AbstractMalware analysis is a task of utmost importance in cyber-security. Two approaches exist for malware analysis: static and dynamic. Modern malware uses an abundance of techniques to evade both dynamic and static analysis tools. Current dynamic analysis solutions either make modifications to the running malware or use a higher privilege component that does the actual analysis. The former can be easily detected by sophisticated malware while the latter often induces a significant performance overhead. We propose a method that performs malware analysis within the context of the OS itself. Furthermore, the analysis component is camouflaged by a hypervisor, which makes it completely transparent to the running OS and its applications. The evaluation of the system’s efficiency suggests that the induced performance overhead is negligible.


Author(s):  
Elisavet Kaltsouni ◽  
Patrick M. Fisher ◽  
Manon Dubol ◽  
Steinar Hustad ◽  
Rupert Lanzenberger ◽  
...  

AbstractPremenstrual dysphoric disorder (PMDD) is a psychiatric condition characterized by late luteal phase affective, cognitive, and physical impairment. The disorder causes significant suffering in about 5% of women in their reproductive age. Altered sensitivity of cognitive-affective brain circuits to progesterone and its downstream metabolite allopregnanolone is suggested to underlie PMDD symptomatology. Core mood symptoms include irritability and anger, with aggression being the behavioral outcome of these symptoms. The present study sought to investigate the neural correlates of reactive aggression during the premenstrual phase in women with PMDD, randomized to a selective progesterone receptor modulator (SPRM) or placebo. Self-reports on the Daily Record of Severity of Problems were used to assess PMDD symptoms and gonadal hormone levels were measured by liquid chromatography tandem mass spectrometry. Functional magnetic resonance imaging was performed in 30 women with PMDD, while performing the point subtraction aggression paradigm. Overall, a high SPRM treatment response rate was attained (93%), in comparison with placebo (53.3%). Women with PMDD randomized to SPRM treatment had enhanced brain reactivity in the dorsal anterior cingulate cortex and dorsomedial prefrontal cortex during the aggressive response condition. The fronto-cingulate reactivity during aggressive responses depended on treatment, with a negative relationship between brain reactivity and task-related aggressiveness found in the placebo but not the SPRM group. The findings contribute to define the role of progesterone in PMDD symptomatology, suggesting a beneficial effect of progesterone receptor antagonism, and consequent anovulation, on top-down emotion regulation, i.e., greater fronto-cingulate activity in response to provocation stimuli.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lukas Brenner ◽  
Leah Zerlin ◽  
Linette Liqi Tan

AbstractVisceral pain is a highly complex experience and is the most common pathological feature in patients suffering from inflammatory gastrointestinal disorders. Whilst it is increasingly recognized that aberrant neural processing within the gut-brain axis plays a key role in development of neurological symptoms, the underlying mechanisms remain largely unknown. Here, we investigated the cortical activation patterns and effects of non-invasive chemogenetic suppression of cortical activity on visceral hypersensitivity and anxiety-related phenotypes in a well-characterized mouse model of acute colitis induced by dextran sulfate sodium (DSS). We found that within the widespread cortical network, the mid-cingulate cortex (MCC) was consistently highly activated in response to innocuous and noxious mechanical stimulation of the colon. Furthermore, during acute experimental colitis, impairing the activity of the MCC successfully alleviated visceral hypersensitivity, anxiety-like behaviors and visceromotor responses to colorectal distensions (CRDs) via downregulating the excitability of the posterior insula (PI), somatosensory and the rostral anterior cingulate cortices (rACC), but not the prefrontal or anterior insula cortices. These results provide a mechanistic insight into the central cortical circuits underlying painful visceral manifestations and implicate MCC plasticity as a putative target in cingulate-mediated therapies for bowel disorders.


Sign in / Sign up

Export Citation Format

Share Document