scholarly journals Non-Viral Delivery and Therapeutic Application of Small Interfering RNAs

Acta Naturae ◽  
2013 ◽  
Vol 5 (3) ◽  
pp. 35-53 ◽  
Author(s):  
N. A. Nikitenko ◽  
V. S. Prassolov

RNA interference (RNAi) is a powerful method used for gene expression regulation. The increasing knowledge about the molecular mechanism of this phenomenon creates new avenues for the application of the RNAi technology in the treatment of various human diseases. However, delivery of RNA interference mediators, small interfering RNAs (siRNAs), to target cells is a major hurdle. Effective and safe pharmacological use of siRNAs requires carriers that can deliver siRNA to its target site and the development of methods for protection of these fragile molecules from in vivo degradation. This review summarizes various strategies for siRNA delivery, including chemical modification and non-viral approaches, such as the polymer-based, peptide-based, lipid-based techniques, and inorganic nanosystems. The advantages, disadvantages, and prospects for the therapeutic application of these methods are also examined in this paper.

2004 ◽  
Vol 33 (3) ◽  
pp. 545-557 ◽  
Author(s):  
I Bantounas ◽  
L A Phylactou ◽  
J B Uney

In the past 2 years, extraordinary developments in RNA interference (RNAi)-based methodologies have seen small interfering RNAs (siRNA) become the method of choice for researchers wishing to target specific genes for silencing. In this review, an historic overview of the biochemistry of the RNAi pathway is described together with the latest advances in the RNAi field. Particular emphasis is given to strategies by which siRNAs are used to study mammalian gene function. In this regard, the use of plasmid-based and viral vector-based systems to mediate long-term RNAi in vitro and in vivo are described. However, recent work has shown that non-specific silencing effects and activation of the interferon response may occur following the use of some siRNA and delivery vector combinations. Future goals must therefore be to understand the mechanisms by which siRNA delivery leads to unwanted gene silencing effects in cells and, in this way, RNAi technology can reach its tremendous potential as a scientific tool and ultimately be used for therapeutic purposes.


2006 ◽  
Vol 2006 ◽  
pp. 1-15 ◽  
Author(s):  
Achim Aigner

RNA interference (RNAi) is a powerful method for specific gene silencing which may also lead to promising novel therapeutic strategies. It is mediated through small interfering RNAs (siRNAs) which sequence-specifically trigger the cleavage and subsequent degradation of their target mRNA. One critical factor is the ability to deliver intact siRNAs into target cells/organs in vivo. This review highlights the mechanism of RNAi and the guidelines for the design of optimal siRNAs. It gives an overview of studies based on the systemic or local application of naked siRNAs or the use of various nonviral siRNA delivery systems. One promising avenue is the the complexation of siRNAs with the polyethylenimine (PEI), which efficiently stabilizes siRNAs and, upon systemic administration, leads to the delivery of the intact siRNAs into different organs. The antitumorigenic effects of PEI/siRNA-mediated in vivo gene-targeting of tumor-relevant proteins like in mouse tumor xenograft models are described.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Wolfgang Poller ◽  
Isaac Sipo ◽  
Dirk Westermann ◽  
Jens Kurreck ◽  
Roland Vetter ◽  
...  

RNA interference (RNAi) has potential to be a novel therapeutic strategy in diverse areas of medicine. We report here on targeted RNAi for the treatment of a viral cardiomyopathy which is a major cause of sudden cardiac death or terminal heart failure in children and young adults. RNAi therapy employs small regulatory RNAs to achieve its effect but in vivo use of synthetic small interfering RNAs is limited by instability in plasma and low transfer into target cells. We instead evaluated an RNAi strategy using short hairpin RNA (shRdRp) directed at the RNA polymerase (RdRP) of Coxsackievirus B3 (CoxB3) in HeLa cells, primary rat cardiomyocytes (PNCMs), and CoxB3-infected mice in vivo. A conventional AAV2 vector expressing shRdRp protected HeLa against virus-induced death, but this vector type was unable to transduce PNCMs. In contrast, an analogous pseudotyped AAV2.6 vector was protective also in PNCMs and reduced virus replication by >3 log10 steps. Finally, we evaluated intravenous treatment of mice with an AAV2.9-shRdRp vector since AAV9 carries the most cardiotropic AAV capsid currently known for in vivo use. Mice with CoxB3 cardiomyopathy had disturbed left ventricular (LV) function with impaired parameters of contractility (dP/dtmax 3006±287 vs. 7482±487 mmHg/s, p<0.01) and diastolic relaxation (dP/dtmin -2224±195 vs. -6456±356 mmHg/s, p<0.01 and Tau 16.2±1.1 vs. 10.7±0.6 ms, p<0.01) as compared to control mice. AAV2.9-shRdRp treatment significantly attenuated the cardiac dysfunction compared to control vector-treated mice on day 10 after CoxB3 infection: dP/dtmax 3865±354 vs. 3006±287 mmHg/s (p<0.05) and dP/dtmin -3245±231 vs. −2224±195, mmHg/s (p<0.05), and Tau 11.9±0.5 vs. 16.2±1.1 ms (p<0.01). The data show, for the first time, that intravenously injected AAV9 has the potential to target RNAi to the heart and suggest AAV9-shRNA vectors as a novel therapeutic approach for cardiac disorders.


2019 ◽  
Vol 47 (21) ◽  
pp. 11020-11043 ◽  
Author(s):  
Felix Alonso-Valenteen ◽  
Sayuri Pacheco ◽  
Dustin Srinivas ◽  
Altan Rentsendorj ◽  
David Chu ◽  
...  

AbstractRNA interference represents a potent intervention for cancer treatment but requires a robust delivery agent for transporting gene-modulating molecules, such as small interfering RNAs (siRNAs). Although numerous molecular approaches for siRNA delivery are adequate in vitro, delivery to therapeutic targets in vivo is limited by payload integrity, cell targeting, efficient cell uptake, and membrane penetration. We constructed nonviral biomaterials to transport small nucleic acids to cell targets, including tumor cells, on the basis of the self-assembling and cell-penetrating activities of the adenovirus capsid penton base. Our recombinant penton base chimera contains polypeptide domains designed for noncovalent assembly with anionic molecules and tumor homing. Here, structural modeling, molecular dynamics simulations, and functional assays suggest that it forms pentameric units resembling viral capsomeres that assemble into larger capsid-like structures when combined with siRNA cargo. Pentamerization forms a barrel lined with charged residues mediating pH-responsive dissociation and exposing masked domains, providing insight on the endosomolytic mechanism. The therapeutic impact was examined on tumors expressing high levels of HER3/ErbB3 that are resistant to clinical inhibitors. Our findings suggest that our construct may utilize ligand mimicry to avoid host attack and target the siRNA to HER3+ tumors by forming multivalent capsid-like structures.


2021 ◽  
Author(s):  
Mai Hazekawa ◽  
Takuya Nishinakagawa ◽  
Takeshi Mori ◽  
Miyako Yoshida ◽  
Takahiro Uchida ◽  
...  

Abstract Small interfering RNAs (siRNAs) are susceptible to nucleases and degrade quickly in vivo. Moreover, siRNAs demonstrate poor cellular uptake and cannot cross the cell membrane because of its polyanionic characteristics. To overcome these challenges, an intelligent gene delivery system that protects siRNAs from nucleases and facilitates siRNA cellular uptake is required. We previously reported the potential of siRNA-poly(D,L-lactic-co-glycolic acid; PLGA) micelles as an effective siRNA delivery tool in a murine peritoneal dissemination model by local injection. However, there was no effective formulation for siRNA delivery to target cells via intravenous injection. This study aimed to prepare siRNA–PLGA/Fabʹ–PLGA mixed micelles for siRNA delivery to target floating cells and evaluate its formulation in vitro. As the target siRNA protein in CEMx174, CyclinB1 levels were significantly reduced when siRNA–PLGA/Fabʹ–PLGA mixed micelles were added to cells compared with siRNA–PLGA micelles. siRNA–PLGA/Fabʹ–PLGA mixed micelles have high cell permeability and high target cell accumulation by endocytosis because flow cytometry detected labeling micelles in target cells. This study supports siRNA–PLGA/Fabʹ–PLGA mixed micelles as an effective siRNA delivery tool. This formulation can be administered systemically in dosage form against target cells, including cancer metastasis or blood cancer.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mai Hazekawa ◽  
Takuya Nishinakagawa ◽  
Takeshi Mori ◽  
Miyako Yoshida ◽  
Takahiro Uchida ◽  
...  

AbstractSmall interfering RNAs (siRNAs) are susceptible to nucleases and degrade quickly in vivo. Moreover, siRNAs demonstrate poor cellular uptake and cannot cross the cell membrane because of its polyanionic characteristics. To overcome these challenges, an intelligent gene delivery system that protects siRNAs from nucleases and facilitates siRNA cellular uptake is required. We previously reported the potential of siRNA-poly(d,l-lactic-co-glycolic acid; PLGA) micelles as an effective siRNA delivery tool in a murine peritoneal dissemination model by local injection. However, there was no effective formulation for siRNA delivery to target cells via intravenous injection. This study aimed to prepare siRNA–PLGA/Fabʹ–PLGA mixed micelles for siRNA delivery to target floating cells and evaluate its formulation in vitro. As the target siRNA protein in CEMx174, CyclinB1 levels were significantly reduced when siRNA–PLGA/Fabʹ–PLGA mixed micelles were added to cells compared with siRNA–PLGA micelles. siRNA–PLGA/Fabʹ–PLGA mixed micelles have high cell permeability and high target cell accumulation by endocytosis because flow cytometry detected labeling micelles in target cells. This study supports siRNA–PLGA/Fabʹ–PLGA mixed micelles as an effective siRNA delivery tool. This formulation can be administered systemically in dosage form against target cells, including cancer metastasis or blood cancer.


2018 ◽  
Author(s):  
Maire F. Osborn ◽  
Andrew H. Coles ◽  
Annabelle Biscans ◽  
Reka A. Haraszti ◽  
Loic Roux ◽  
...  

AbstractEfficient delivery of therapeutic RNA is the fundamental obstacle preventing its clinical utility. Lipid conjugation improves plasma half-life, tissue accumulation, and cellular uptake of small interfering RNAs (siRNAs). However, the impact of conjugate structure and hydrophobicity on siRNA pharmacokinetics is unclear, impeding the design of clinically relevant lipid-siRNAs. Using a panel of biologically-occurring lipids, we show that lipid conjugation modulates siRNA hydrophobicity and governs spontaneous partitioning into distinct plasma lipoprotein classes in vivo. Lipoprotein binding influences siRNA distribution by delaying renal excretion and promoting uptake into lipoprotein receptor-enriched tissues. Lipid-siRNAs elicit mRNA silencing without causing toxicity in a tissue-specific manner. Lipid-siRNA internalization occurs independently of lipoprotein endocytosis, and is mediated by siRNA phosphorothioate modifications. Although biomimetic lipoprotein nanoparticles have been considered for the enhancement of siRNA delivery, our findings suggest that hydrophobic modifications can be leveraged to incorporate therapeutic siRNA into endogenous lipid transport pathways without the requirement for synthetic formulation.


2021 ◽  
Vol 27 ◽  
Author(s):  
Iman Alfagih ◽  
Basmah Aldosari ◽  
Bushra AlQuadeib ◽  
Alanood Almurshedi ◽  
Murtaza Tambuwala

: Ulcerative colitis (UC) is one of the main subtypes of inflammatory bowel disease. UC has a negative effect on patients’ quality of life, and it is an important risk factor for the development of colitis-associated cancer. Patients with UC need to take medications for their entire life because no permanent cure is available. Therefore, approaches that target messenger RNA (mRNA) of proinflammatory cytokines or anti-inflammatory cytokines are needed to improve the safety of UC therapy and promote intestinal mucosa recovery. The major challenge facing RNA interference-based therapy is the delivery of RNA molecules to the intracellular space of target cells. Moreover, nonspecific and systemic protein expression inhibition can result in adverse effects and less therapeutic benefits. Thus, it is important to develop an efficient delivery strategy targeting the cytoplasm of target cells to avoid side effects caused by off-target protein expression inhibition. This review focuses on the most recent advances in the targeted nano delivery systems of siRNAs and mRNA that have shown in vivo efficacy.


2019 ◽  
Vol 5 (2) ◽  
pp. eaav9322 ◽  
Author(s):  
Dali Wang ◽  
Jiaqi Lin ◽  
Fei Jia ◽  
Xuyu Tan ◽  
Yuyan Wang ◽  
...  

Nonhepatic delivery of small interfering RNAs (siRNAs) remains a challenge for development of RNA interference–based therapeutics. We report a noncationic vector wherein linear poly(ethylene glycol) (PEG), a polymer generally considered as inert and safe biologically but ineffective as a vector, is transformed into a bottlebrush architecture. This topology provides covalently embedded siRNA with augmented nuclease stability and cellular uptake. Consisting almost entirely of PEG and siRNA, the conjugates exhibit a ~25-fold increase in blood elimination half-life and a ~19-fold increase in the area under the curve compared with unmodified siRNA. The improved pharmacokinetics results in greater tumor uptake and diminished liver capture. Despite the structural simplicity these conjugates efficiently knock down target genes in vivo without apparent toxic and immunogenic reactions. Given the benign biological nature of PEG and its widespread precedence in biopharmaceuticals, we anticipate the brush polymer–based technology to have a significant impact on siRNA therapeutics.


Sign in / Sign up

Export Citation Format

Share Document