scholarly journals A Novel Approach to Anticancer Therapy: Molecular Modules Based on the Barnase:Barstar Pair for Targeted Delivery of HSP70 to Tumor Cells

Acta Naturae ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 85-91 ◽  
Author(s):  
A. M. Sapozhnikov ◽  
A. V. Klinkova ◽  
O. A. Shustova ◽  
M. V. Grechikhina ◽  
M. S. Kilyachus ◽  
...  

One important distinction between many tumor cell types and normal cells consists in the translocation of a number of intracellular proteins, in particular the 70 kDa heat shock protein (HSP70), to the surface of the plasma membrane. It has been demonstrated that such surface localization of HSP70 on tumor cells is recognized by cytotoxic effectors of the immune system, which increases their cytolytic activity. The mechanisms behind this interaction are not fully clear; however, the phenomenon of surface localization of HSP70 on cancer cells can be used to develop new approaches to antitumor immunotherapy. At the same time, it is known that the presence of HSP70 on a cells surface is not a universal feature of cancer cells. Many types of tumor tissues do not express membrane-associated HSP70, which limits the clinical potential of these approaches. In this context, targeted delivery of exogenous HSP70 to the surface of cancer cells with the aim of attracting and activating the cytotoxic effectors of the immune system can be considered a promising means of antitumor immunotherapy. Molecular constructs containing recombinant mini-antibodies specific to tumor-associated antigens (in particular, antibodies specific to HER2/neu-antigen and other markers highly expressed on the surface of a wide range of cancer cells) can be used to target the delivery of HSP70 to tumor tissues. In order to assess the feasibility and effectiveness of this approach, recombinant constructs containing a mini-antibody specific to the HER2/ neu-antigen in the first module and HSP70 molecule or a fragment of this protein in the second module were developed in this study. Strong selective interaction between the modules was ensured by a cohesive unit formed by the barnase:barstar pair, a heterodimer characterized by an unusually high constant of association. During testing of the developed constructs in in vitro models the constructs exhibited targeted binding to tumor cells expressing the HER2/neu antigen and the agents had a significant stimulating effect on the cytotoxic activity of NK cells against the respective cancer cells.

2022 ◽  
Vol 23 (1) ◽  
pp. 575
Author(s):  
Katharina Woess ◽  
Yuchen Sun ◽  
Hanae Morio ◽  
Anna Stierschneider ◽  
Anna Kaufmann ◽  
...  

Conventional anti-cancer therapies based on chemo- and/or radiotherapy represent highly effective means to kill cancer cells but lack tumor specificity and, therefore, result in a wide range of iatrogenic effects. A promising approach to overcome this obstacle is spliceosome-mediated RNA trans-splicing (SMaRT), which can be leveraged to target tumor cells while leaving normal cells unharmed. Notably, a previously established RNA trans-splicing molecule (RTM44) showed efficacy and specificity in exchanging the coding sequence of a cancer target gene (Ct-SLCO1B3) with the suicide gene HSV1-thymidine kinase in a colorectal cancer model, thereby rendering tumor cells sensitive to the prodrug ganciclovir (GCV). In the present work, we expand the application of this approach, using the same RTM44 in aggressive skin cancer arising in the rare genetic skin disease recessive dystrophic epidermolysis bullosa (RDEB). Stable expression of RTM44, but not a splicing-deficient control (NC), in RDEB-SCC cells resulted in expression of the expected fusion product at the mRNA and protein level. Importantly, systemic GCV treatment of mice bearing RTM44-expressing cancer cells resulted in a significant reduction in tumor volume and weight compared with controls. Thus, our results demonstrate the applicability of RTM44-mediated targeting of the cancer gene Ct-SLCO1B3 in a different malignancy.


1972 ◽  
Vol 27 (12) ◽  
pp. 1547-1566 ◽  
Author(s):  
Manfred Von Ardenne

Basic to the proposed therapeutic usage of the difference in the in-vivo proliferation control between cancer and normal cells are the temporary selective increase in the proliferation rate and number of cancer cells in all kinds of tumors but without increase of the proliferative activity of normal cells. To further this aim, measurements of cellular kinetics are used, in connection with the glycolysis of different tumor tissues under saturation conditions, with the relationship between cancer cell cycle and glycolytic rate, or the local glucose level respectively, with the wide range of glucose concentrations in tumor regions which differ the conditions of supply, with the pO2-value critical for tumor growth (≈ 0.4 Torr), with the pO2-distribution in tumor tissues and the time distribution of cell cycles in human and animal cancerous tissues. From an approximative description of the cytostatic effects in different tumor regions and its validity limits it is estimated that the sensitivity towarts therapy is decreased to as low as one-tenth in poorly supplied tumor regions. These particular fractions of the tumor tissues determine the degree of tumor resistence. Additionally, from these considerations steps can be derived which could be important for multiplying the effect of the cytostatic attack on the critical tumor regions with poor supply conditions. These steps include: a) usage of combinations of cytostatic agents directed against all three sensitive phases of the cell cycle (S-G2-M); b) increase in blood glucose concentration to about 300 mg% for an optimum time span prior to the initiation of the main therapeutic process; c) increase in pO2 of the inspiration air to 320 or 400 Torr and in the degree of pO2 utilization by the use of specific pharmaceutic agents for the chosen time span preceding the main therapy; d) stimulation of tumor vascularization preceding the main therapy; e) decrease in the fraction of tumor cells utilizing glucose and O2 as a consequence of a post-therapy treatment 72 hours after the main therapy. The increase in the fraction of cells in a sensitive phase of the cell cycle is reached folowing synchronization after increasing the glucose concentration until saturation of the glycolytic capacity. Reasons are given, why the cytostatic attack has to be supplemented by other selective mechanisms which damage the tumor cell independent of the phase of the cell cycle. Such a mechanism is the lysosomal cytolytic chain reaction. Here, the death of tumor cells occurring during a sensitive phase of the cell cycle as a consequence of the cytostatic attack helps to damage cancer cells which are in the insensitive phase. A further mechanism of this kind is the immunological attack, which is also a component of multi-step cancer therapy


1993 ◽  
Vol 69 (04) ◽  
pp. 335-338 ◽  
Author(s):  
Marisa Zucchella ◽  
Lucia Pacchiarini ◽  
Fiorenzo Tacconi ◽  
Anna Saporiti ◽  
Guido Grignani

SummaryWe studied in a homologous system the procoagulant activity of human tumor cells cultured “in vitro” (1402 primary melanoma, Me 7110/2 metastatic melanoma, Hep G2 hepatoma and GLC1 small cell lung carcinoma) or of cells freshly isolatedfrom different human tumor tissues.Tumor cells cultured “in vitro” possessed and released a factor VII dependent procoagulant activity, which was inhibitedby concanavalin A and unaffected by iodoacetamide or HgCl2. The activity released by the cells of metastatic melanoma was higher than that released by the cells of the primary tumor. On the contrary, cancer cells isolated from tumor tissues possessed and released a factor VII independent activity which was inhibited by iodoacetamide or HgCl2 and was not modified by concanavalin A. Therefore, different methods for the preparation of tumor cell suspensions have to be used for the study of tumor procoagulants, since their expression depends very largely on the source of tumor cells. Furthermore, cultured human tumor cells are not an appropriate model for the “in vivo” procoagulant effect of tumor cells.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A76-A76
Author(s):  
Simarjot Pabla ◽  
Tenzing Khendu ◽  
Dhan Chand ◽  
Bulent Aksoy ◽  
Benjamin Duckless ◽  
...  

BackgroundAnti-PD-1 therapies have achieved durable clinical responses in a wide range of malignancies, but responses are limited to a small subset of patients. Expression of PD-L1 on tumor cells by immunohistochemistry (IHC) has been applied as a companion diagnostic for anti-PD-1 therapy. However, recent studies have called in to question the reliability of this method to predict response.MethodsHere we developed a novel platform that integrates in vitro pharmacogenomic and functional data with clinical pharmacodynamic responses to immunotherapy using proprietary in silico approaches. The data originate from a long-term co-culture of primary antigen-specific T cells and cancer cells which drives T cells to a terminally dysfunctional, PD-1 refractory state. T cell effector functions and gene expression changes were monitored in the presence or absence of anti-PD-1 antibody or genetic knockouts. RNA expression signatures were refined with a randomized sliding window approach to generate a deep learning neural network for PD-1 response prediction.ResultsWe defined five T cell states associated with distinct phenotypic and molecular features - naïve, active, effector, transition and dysfunction. Among the genes that were selectively expressed in the dysfunction state, we identified a 96-gene signature that is closely associated with clinical outcomes to anti-PD-1 therapy. In PD-1 treated patients across multiple solid tumor indications, this signature correlates with objective response rate and outperforms traditional metrics such as tumor mutation burden or PD-L1 IHC signal. Moreover, this signature combines with tumor sequencing data to generate a powerful machine-learning model that predicts anti-PD-1 responses in metastatic melanoma patients with significantly higher accuracy than PD-L1 IHC. Having established that the T cell states in our co-culture relate to clinical outcomes, we leveraged the system to investigate the molecular basis for PD-1 responses. Single cell mapping of transition state T cells in the presence of anti-PD-1 revealed an expanded population of T cells that co-expresses PD-1, TIGIT and activation markers. Likewise, PD-L1 knockout on cancer cells identified the TIGIT ligand, CD155, as a potential tumor escape mechanism to anti-PD-1 therapy. Consistent with this, the combination of PD-1 and TIGIT blockade enhanced T cell cytotoxicity of tumor cells relative to monotherapies.ConclusionsAgenus’ T cell dysfunction platform combines deep in vitro profiling and AI-based approaches to predict clinical outcomes. Here, we defined a predictive biomarker signature that outperforms standard PD-L1 IHC. Further, we identified known (TIGIT) and potentially novel combination partners predicted to enhance the durability of anti-PD-1 responses.Ethics ApprovalNot ApplicableConsentNot Applicable


2020 ◽  
Vol 10 (5) ◽  
pp. 577-590
Author(s):  
Jai B. Sharma ◽  
Shailendra Bhatt ◽  
Asmita Sharma ◽  
Manish Kumar

Background: The potential use of nanocarriers is being explored rapidly for the targeted delivery of anticancer agents. Curcumin is a natural polyphenolic compound obtained from rhizomes of turmeric, belongs to family Zingiberaceae. It possesses chemopreventive and chemotherapeutic activity with low toxicity in almost all types of cancer. The low solubility and bioavailability of curcumin make it unable to use for the clinical purpose. The necessity of an effective strategy to overcome the limitations of curcumin is responsible for the development of its nanocarriers. Objective: This study is aimed to review the role of curcumin nanocarriers for the treatment of cancer with special emphasis on cellular uptake and in vitro cytotoxicity studies. In addition to this, the effect of various ligand conjugated curcumin nanoparticles on different types of cancer was also studied. Methods: A systematic review was conducted by extensively surfing the PubMed, science direct and other portals to get the latest update on recent development in nanocarriers of curcumin. Results: The current data from recent studies showed that nanocarriers of curcumin resulted in the targeted delivery, higher efficacy, enhanced bioavailability and lower toxicity. The curcumin nanoparticles showed significant inhibitory effects on cancer cells as compared to free curcumin. Conclusion: It can be concluded that bioavailability of curcumin and its cytotoxic effect to cancer cells can be enhanced by the development of curcumin based nanocarriers and it was found to be a potential drug delivery technique for the treatment of cancer.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 249
Author(s):  
Ruediger Goess ◽  
Ayse Ceren Mutgan ◽  
Umut Çalışan ◽  
Yusuf Ceyhun Erdoğan ◽  
Lei Ren ◽  
...  

Background: Pancreatic cancer‐associated diabetes mellitus (PC‐DM) is present in most patients with pancreatic cancer, but its pathogenesis remains poorly understood. Therefore, we aimed to characterize tumor infiltration in Langerhans islets in pancreatic cancer and determine its clinical relevance. Methods: Langerhans islet invasion was systematically analyzed in 68 patientswith pancreatic ductal adenocarcinoma (PDAC) using histopathological examination and 3D in vitro migration assays were performed to assess chemoattraction of pancreatic cancer cells to isletcells. Results: Langerhans islet invasion was present in all patients. We found four different patterns of islet invasion: (Type I) peri‐insular invasion with tumor cells directly touching the boundary, but not penetrating the islet; (Type II) endo‐insular invasion with tumor cells inside the round islet; (Type III) distorted islet structure with complete loss of the round islet morphology; and (Type IV)adjacent cancer and islet cells with solitary islet cells encountered adjacent to cancer cells. Pancreatic cancer cells did not exhibit any chemoattraction to islet cells in 3D assays in vitro. Further, there was no clinical correlation of islet invasion using the novel Islet Invasion Severity Score (IISS), which includes all invasion patterns with the occurrence of diabetes mellitus. However, Type IV islet invasion was related to worsened overall survival in our cohort. Conclusions: We systematically analyzed, for the first time, islet invasion in human pancreatic cancer. Four different main patterns of islet invasion were identified. Diabetes mellitus was not related to islet invasion. However, moreresearch on this prevailing feature of pancreatic cancer is needed to better understand underlying principles.


2017 ◽  
Vol 7 (8) ◽  
pp. 549-555 ◽  
Author(s):  
Huzaifa Hanif ◽  
Samina Nazir ◽  
Kehkashan Mazhar ◽  
Muhammad Waseem ◽  
Shazia Bano ◽  
...  

2021 ◽  
Author(s):  
zhengtuan guo ◽  
qiang yv ◽  
chunlin miao ◽  
wenan ge ◽  
peng li

Wilms tumor is the most common type of renal tumor in children. MicroRNAs (miRNA) are small non-coding RNAs that play crucial regulatory roles in tumorigenesis. We aimed to study the expression profile and function of miR-27a-5p in Wilms tumor. MiR-27a-5p expression was downregulated in human Wilms tumor tissues. Functionally, overexpression of miR-27a-5p promoted cell apoptosis of Wilms tumor cells. Furthermore, upregulated miR-27a-5p delayed xenograft Wilms tumor tumorigenesis in vivo. Bioinformatics analysis predicted miR-27-5p directly targeted to the 3’-untranslated region (UTR) of PBOV1 and luciferase reporter assay confirmed the interaction between miR-27a-5p and PBOV1. The function of PBOV1 in Wilms tumor was evaluated in vitro and knockdown of PBOV1 dampened cell migration. In addition, overexpression of PBOV1 antagonized the tumor-suppressive effect of miR-27a-5p in Wilms tumor cells. Collectively, our findings reveal the regulatory axis of miR-27-5p/PBOV1 in Wilms tumor and miR-27a-5p might serve as a novel therapeutic target in Wilms tumor.


2020 ◽  
pp. 1-8
Author(s):  
Yunfeng Zhao ◽  
Cherie Ann Nathan ◽  
Chunjing Zhang ◽  
Hongyan Du ◽  
Manikandan Panchatcharam ◽  
...  

Background: New adjuvant therapies for human head and neck (H&N) cancer to improve the quality of life of the patients are in great demand. Our early studies have demonstrated that uncoupling protein 2 (UCP2) is upregulated in the tumor tissues of H&N cancer compared to the adjacent normal tissues; however, the role of UCP2 in H&N cancer has not been studied. Objective: In this manuscript, we aim to examine whether UCP2 contributes to H&N cancer progression in vitro. Methods: We generated UCP2 stable knockdown H&N cancer cells and detected the effects of UCP2 inhibition on cell proliferation, migration, invasion, 3D spheroid formation, and the sensitivity to a chemodrug treatment. Results: Knockdown of UCP2 suppressed the progression of H&N cancer in vitro, which might be mediated via the following mechanism: 1) increased the G1 phase whereas decreased the S phase of the cell cycle, which could be mediated by suppression of the G1/S regulators including CDK4/6 and cyclin D1. 2) Decreased mitochondrial oxygen consumption, ATP production, and lactate formation, which is consistent with the downregulation of c-Myc. 3) FAK may serve as the upstream signaling molecule, and its action was mediated by Akt and ERK. Conclusions: Our studies first demonstrate that targeting UCP2 may suppress H&N cancer progression in vitro.


2020 ◽  
Author(s):  
Lei Wang ◽  
Xusha Zhou ◽  
Weixuan Zou ◽  
Yinglin Wu ◽  
Jing Zhao ◽  
...  

Abstract Background: Exosomes are small, cellular membrane-derived vesicles with a diameter of 50-150 nm. Exosomes are considered ideal drug delivery systems with a wide range of applications in various diseases, including cancer. However, nonspecific delivery of therapeutic agents by exosomes in vivo remains challenging. H uman epidermal growth factor receptor 2 (HER2) is an epidermal growth factor receptor tyrosine kinase, and its overexpression is usually associated with cell survival and tumor progression in various cancers. In this study, we aim to develop novel exosomes with dual HER2-targeting ability as a nanoparticle delivery vehicle to enhance antitumor efficacy in vivo . Results: Here, we report the generation of two kinds of exosomes carrying miRNAs designed to block HER2 synthesis and consequently kill tumor cells. 293-miR-HER2 exosomes package and deliver designed miRNAs to cells to block HER2 synthesis. These exosomes kill cancer cells dependent on HER2 for survival but do not affect cells that lack HER2 or that are engineered to express HER2 but are not dependent on it for survival. In contrast, 293-miR-XS-HER2 exosomes carry an additional peptide, which enables them to adhere to HER2 on the surface of cancer cells. Consequently, these exosomes preferentially enter and kill cells with surface expression of HER2. 293-miR-XS-HER2 exosomes are significantly more effective than the 293-miR-HER2 exosomes in shrinking HER2-positive tumors implanted in mice. Conclusions: Collectively, as novel antitumor drug delivery vehicles, HER2 dual-targeting exosomes exhibit increased target-specific delivery efficiency and can be further utilized to develop new nanoparticle-based targeted therapies.


Sign in / Sign up

Export Citation Format

Share Document