scholarly journals Дослідження ефективності електрохімічного полірування зразків змінного перерізу з різною шорсткістю зі сталі AISI 316L, виготовлених за технологією SLM

2021 ◽  
pp. 66-73
Author(s):  
Сергій Вікторович Аджамський ◽  
Ганна Андріївна Кононенко ◽  
Ростислав Вячеславович Подольський ◽  
Сергій Іванович Бадюк

Additive manufacturing technology, also known as 3D printing, has become an increasing amount of popular lately, and the number of materials and methods that can be used is expanding. As manufacturing processes continue to improve and evolve, the demand for faster, less expensive manufacturing processes has enabled a range of Rapid Prototyping (RP) processes to be developed. Since production processes continue to evolve and grow, the demand for faster and less expensive production processes has allowed the development of a series of processes of rapid prototyping (RP). With additive manufacturing, virtually any geometry with variations in size and complexity can be produced with a high degree of accuracy. The typical microstructure of the metal after the completion of the construction process is the dispersed dendritic and cellular structures of the γ-phase within the melt baths of single tracks, because of the overlap of which a part is created layer by layer. The main problems of ensuring high-quality products using SLM technology are porosity, hot cracking, anisotropy, surface roughness, and ensuring the necessary microstructure of the synthesized material. Improvement of surface roughness, the brilliance of stainless steel surface elements after electrochemical polishing (EP) is one of the most important characteristics of the process. Samples were made using the SLM technology from austenitic steel powder AISI 316L with a controlled defect in the form of local overheating, because of which an orange variability is formed, which is formed during 3-D printing. The samples are inversely symmetrical, have an equilateral trapezoid shape with bases of 20 and 5 mm, a height of 10 mm, and a thickness of 5 mm. The main body of both samples was printed in the same modes at a power of 220 W, a speed of 1000 mm / s, and a track spacing of 0,14 mm. To form a controlled defect when printing the boundaries of the samples, the following modes were used: power 120 W, speed 1050 mm / s, and distance between tracks 0,02 mm. The samples were printed in an Alfa-280 3D printer manufactured by ALT Ukraine. Etching to reveal the microstructure of the samples was conducted using an HCl + HNO3 solution. Electropolishing was conducted in a solution of orthophosphoric acid (H3PO4) with glycerol (C3H8O3) at a current density of 3 A / cm2. Metallographic studies have shown that the configuration of the tracks in the area of increasing the cross-section of the samples is more uniform. Based on this study, schemes for distributing zones with varying degrees of track equiaxiality and structure uniformity were constructed. A more intense interaction of the reagent with the microstructure near the surface with greater roughness was found. The electropolishing of isosceles trapezoids occurred in three stages: 1) visual - optical examination with fixation, control of roughness, weight, and geometry before starting the process; 2) control of roughness and geometry after 3 min. process; 3) visual - optical examination with fixation, control of roughness, weight, and geometry after 6 min electropolishing. From the analysis of the obtained roughness data and the real volt-ampere curve, it was found that zone 2 with the largest area had an insignificant change in roughness, zone 1 and zone 3 with a decrease in the area had a more significant loss on average by 33%. Controlling the weight before and after the test showed that the samples lost approximately the same weight of about 1,5%. Based on the ratio of the results obtained, it was found that when a fixed current strength and constant power are applied, electropolishing is not effective for active uniform anodization of the surface of a simple figure with a change in the area in the section. It was found that electropolishing most intensively occurs in an area with a smaller cross-sectional area.

2018 ◽  
Vol 771 ◽  
pp. 97-102 ◽  
Author(s):  
Andrey Ripetskiy ◽  
Stanislav Vassilyev ◽  
Sergey Zelenov ◽  
Ekaterina Kuznetsova

The mathematical methods and examples considered in the article allow efficient modeling of additive manufacturing processes by formulating a number of new criteria for geometry evaluation for compliance with the technological limitations of the additive manufacturing techniques. The aim of the research is the development of the new techniques, methods, algorithms and structured data aimed to validate the entire chain of additive manufacturing process.


2017 ◽  
Vol 68 (8) ◽  
pp. 1854-1857
Author(s):  
Corneliu Rontescu ◽  
Dumitru Titi Cicic ◽  
Ana Maria Bogatu ◽  
Catalin Gheorghe Amza ◽  
Oana Roxana Chivu

The present paper presents the results of the analysis made on samples obtained by additive manufacturing processes, necessary to realize prostheses and medical instruments. The samples were obtained by melting fine metal powder of Co-Cr by rapid prototyping process - Direct Metal Laser Sintering (DMLS). The examination of the samples (by methods of optical microscopic, scanning electron microscopy (SEM) and the spectroscopy method of X-ray energy dispersion) revealed that the surface of the obtained components contains incomplete melting areas whose size depends on the shape of the surface and the meshing level of the 3D model.


Author(s):  
Manoj Kumar Agrawal

The latest process involved in the design, development and delivery of products to the end users has been implemented utilizing additive manufacturing (AM) or three-dimensional (3D) printing. This technology provides a great deal of freedom in the production of complicated parts, highly personalized goods and effective waste reduction. The new technological and Industrial revolution, utilizes the incorporation of intelligent fabrication and CAD processes. Via its various advantages, such as time and material savings, rapid prototyping, has enhanced productivity as well as distributed manufacturing processes, where AM actively participates and plays significant role in the industrial advancements. This paper is intended to conduct an analytical review of the latest developments and technological aspects in the AM innovation. This paper also explores the viability of the additive manufacturing mechanism as well as the advantages of the product in global, social and ecological fields. At last, the paper finishes with an outline of AM's potential in technologies, implementations and products developments, which will generate new concepts for AM discovery in the coming years..


Author(s):  
C J Luis Pérez ◽  
J Vivancos Calvet

The present study focuses on aspects of the surface qualities of prototypes obtained by multijet modelling (MJM) techniques. The surface finish and dimensional precision of parts obtained through these manufacturing processes are often highly important, especially in those cases where the manufactured prototypes are used as functional parts, as in the case of lost wax casting. Moreover, it is important to obtain an estimate of the average surface roughness in order to select the appropriate manufacturing parameters. Although there are many different techniques for evaluating surface roughness, one of the most commonly employed methods involves the assessment of the average surface roughness by means of stylus instruments. Prototypes were manufactured using two different MJM systems under different conditions for each prototype. After the parts were obtained, an experimental study of effective roughness was carried out. A comparative study using the same MJM systems with different accuracies was also performed in order to evaluate the capability of these rapid prototyping techniques to manufacture parts.


Author(s):  
Rohit Pandey ◽  
Sandeep Salodkar

Purpose of study: Additive manufacturing processes taking the basic information form computer-aided design (CAD) file to convert into the stereolithography (STL) data file. Today additive layer manufacturing processes are playing a very vital role in manufacturing parts with high rate of effectiveness and accuracy. CAD software is approximated to sliced containing information of each layer by layer that is printed. The main purpose of the study is to discuss the scientific and technological challenges of additive layer manufacturing processes for making polymer components production through various technological parameters and problem-solving techniques of layer manufacturing processes. Main findings: Additive layer manufacturing is simply another name for 3D printing or rapid prototyping. As 3D printing has evolved as a technology, it has moved beyond prototyping and into the manufacturing space, with small runs of finished components now being produced by 3D printing machines around the world. Additive layer manufacturing (ALM) is the opposite of subtractive manufacturing, in which material is removed to reach the desired shape Methodology Used:  The continuous and increasing growth of additive layer manufacturing processes to discuss with different experimental behavior through simulations and graphical representations. In ALM, 3D parts are built up in successive layers of material under computer control. In its early days, 3D printing was used mainly for rapid prototyping, but it is now frequently used to make finished parts the automotive and aerospace sectors, amongst many others. The originality of study: At the present time, the technologies of additive manufacturing are not just using for making models with the plastics but using polymer materials. It is possible to make finished products developed with high accuracy and save a lot of time and there is the possibility of testing more models.


2021 ◽  
Vol 33 (2) ◽  
Author(s):  
B. Reitz ◽  
C. Lotz ◽  
N. Gerdes ◽  
S. Linke ◽  
E. Olsen ◽  
...  

AbstractMankind is setting to colonize space, for which the manufacturing of habitats, tools, spare parts and other infrastructure is required. Commercial manufacturing processes are already well engineered under standard conditions on Earth, which means under Earth’s gravity and atmosphere. Based on the literature review, additive manufacturing under lunar and other space gravitational conditions have only been researched to a very limited extent. Especially, additive manufacturing offers many advantages, as it can produce complex structures while saving resources. The materials used do not have to be taken along on the mission, they can even be mined and processed on-site. The Einstein-Elevator offers a unique test environment for experiments under different gravitational conditions. Laser experiments on selectively melting regolith simulant are successfully conducted under lunar gravity and microgravity. The created samples are characterized in terms of their geometry, mass and porosity. These experiments are the first additive manufacturing tests under lunar gravity worldwide.


Author(s):  
Filippo Simoni ◽  
Andrea Huxol ◽  
Franz-Josef Villmer

AbstractIn the last years, Additive Manufacturing, thanks to its capability of continuous improvements in performance and cost-efficiency, was able to partly replace and redefine well-established manufacturing processes. This research is based on the idea to achieve great cost and operational benefits especially in the field of tool making for injection molding by combining traditional and additive manufacturing in one process chain. Special attention is given to the surface quality in terms of surface roughness and its optimization directly in the Selective Laser Melting process. This article presents the possibility for a remelting process of the SLM parts as a way to optimize the surfaces of the produced parts. The influence of laser remelting on the surface roughness of the parts is analyzed while varying machine parameters like laser power and scan settings. Laser remelting with optimized parameter settings considerably improves the surface quality of SLM parts and is a great starting point for further post-processing techniques, which require a low initial value of surface roughness.


Sign in / Sign up

Export Citation Format

Share Document