scholarly journals РОЗРОБКА СИСТЕМИ РУЧНОГО РОБОТА-МАНІПУЛЯТОРА З ДИСТАНЦІЙНИМ УПРАВЛІННЯМ

Author(s):  
D. N. Kritskiy ◽  
T. A. Plastun ◽  
E. M. Guobadia

The aim of this research work is to research and develop a system of a hand-like remote-controlled robotic arm. Devices of this design are currently in demand in many areas of human life, in particular during rescue operations. The described device must be able to hold an object of arbitrary shape using a gripper, has acceptable positioning and control accuracy. Such a device can be used to work in a harmful or hazardous environment, thereby minimizing the harmful effects on humans. The control system of such a device must provide a protocol for transferring data from the input device to the end handle of the manipulator to perform the corresponding movement. To start the development process, market analysis was conducted, in the process of which several similar products were identified and compared against each other and the system being developed. As a result of that analysis, comparison table was created listing the main features of the system being developed in comparison to existing solutions on the market, to check whether it will be competitive at the current market.In this article, such system is proposed and later developed with the analysis of modern technical components and taking into account the accompanying scientific and technical research. In the course of the work, the analysis of existing technical solutions was carried out, the principles of operation of individual components were considered, and the process of developing the final system was described. As a processor device, it was decided to use the Arduino Uno and Arduino Nano microprocessor boards, which provide convenient tools for working with ATmega microprocessors with high performance and energy efficiency.As a result of this work, functional, logical and electrical circuits were created and described, which were used to create a working prototype of the system, as well as a diagram of the model of the manipulator body, which was printed using a 3D printer. Using the created circuits, a working prototype of the described system was built, which was successfully tested, a demonstration of which is given in the work. The created one can be integrated as a subsystem into a larger-scale project.

Author(s):  
Paolo Visconti ◽  
Ramiro Velazquez ◽  
Stefano Capoccia ◽  
Roberto De Fazio

<p>In this research work, a fast and lightweight AES-128 cypher based on the Xilinx ZCU102 FPGA board is presented, suitable for 5G communications. In particular, both encryption and decryption algorithms have been developed using a pipelined approach, so enabling the simultaneous processing of the rounds on multiple data packets at each clock cycle. Both the encryption and decryption systems support an operative frequency up to 220 MHz, reaching 28.16 Gbit/s maximum data throughput; besides, the encryption and decryption phases last both only ten clock periods. To guarantee the interoperability of the developed encryption/decryption system with the other sections of the 5G communication apparatus, synchronization and control signals have been integrated. The encryption system uses only 1631 CLBs, whereas the decryption one only 3464 CLBs, ascribable, mainly, to the Inverse Mix Columns step. The developed cypher shows higher efficiency (8.63 Mbps/slice) than similar solutions present in literature.</p>


Author(s):  
Anto´nio F. Mateus ◽  
Joel A. Witz ◽  
Paulo P. Silva ◽  
Carlos A. Pereira

The reduction of response motion experienced by monohull marine structures through energy dissipation performed by passive stabilisers such as bilge keels is an inexpensive system, when compared to the active motion reduction systems such as active stabilisers or active stabilising fluid tanks. This is the main reason why, despite the obvious advances in motion reduction and control, bilge keels are still designed, produced and fitted to the most recent ships and other marine structures produced. The design philosophy of passive roll stabilisers such as bilge keels has been, and still is, often based on empirical or design codes that define a standard structural arrangement, which is then sized in accordance with the specific characteristics of the vessel. This paper discusses the main internal structural arrangement configurations which may be adopted for bilge keel design, highlights the critical details which particular attention has to be paid to, presents the main steps involved in the sizing of the structural elements, and evaluates the more advantageous configurations with respect to performance vs. production cost. In what respects internal arrangement, the widest possible range of possibilities is considered, from the simple and fairly inefficient flat bar configuration, to the highly complex high performance diaphragm based designs. The advantages, disadvantages, estimated design and production efforts are presented and discussed. This work aims at providing a comprehensive review and a systematisation of the design principles applied for these structural components, envisaging to providing a simple and effective guide for the global and detailed design of their structures. Conclusions and further research work are drawn regarding the results obtained and the best solutions proposed.


2020 ◽  
Vol 20 (1) ◽  
pp. e02
Author(s):  
Erica Soledad Montes de Oca ◽  
Remo Suppi ◽  
Laura Cristina De Gisuti ◽  
Marcelo Naiouf

The increase in temperature caused by the climate change has resulted in the rapid dissemination of infectious diseases. Given the alert for the current situation, the World Health Organization (WHO) has declared a state of health emergency, highlighting the severity of the situation in some countries. For this reason, coming up with knowledge and tools that can help control and eradicate the vectors propagating these diseases is of the utmost importance. High-performance modeling and simulation can be used to produce knowledge and strategies that allow predicting infections, guiding actions and/or training health/civil protection agents. The model developed as part of this research work is aimed at assisting the decision-making process for disease prevention and control, as well as evaluating the reproduction and predicting the evolution of the Aedes aegypti mosquito, which is the transmitting vector of the dengue, Zika and chikungunya diseases. Since a large number of simulation runs are required to achieve results with statistical variability, GPU has been used. This platform has enough computational power to reduce execution time while maintaining a lower energy consumption. Different scenarios and experiments are proposed to corroborate the benefits of the architecture proposed.


2020 ◽  
Vol 16 (8) ◽  
pp. 1163-1169
Author(s):  
Aziz Homayouni-Rad ◽  
Aslan Azizi ◽  
Parvin Oroojzadeh ◽  
Hadi Pourjafar

Background: Yeasts play diverse roles in human life. Since ancient times, these micro organisms have been used to produce food products and beverages including bread and beer. Nowadays, the biotechnological products of yeast are some of the main components of commercial products. Objective: Some species of yeast such as Saccharomyces cerevisiae and Saccharomyces boulardii are recognized as probiotic yeast with extensive applications in the food and drug industries. However, certain species like Kluyveromyces marxianus are still not recognized as probiotic micro organisms despite their widespread industrial usage. In this study, the application of K. marxianus in preparing food and the medicinal product was reviewed in terms of its beneficial or harmful effects. Methods: Pub Med, Google Scholar, Scopus, and Science Direct databases were searched by using “Probiotics”, “Yeast”, and “Kluyveromyces marxianus”. Results: The findings suggest that K. marxianus can be recognized as a probiotic yeast species. Conclusion: It can be concluded that K. marxianus may be considered as a probiotic micro organism with a variety of commercial and medical applications.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 644
Author(s):  
Do-Yeong Kim ◽  
Boram Kim ◽  
Han-Seung Shin

The effect of cellulosic aerogel treatments used for adsorption of four polycyclic aromatic hydrocarbons (PAHs)—benzo[a]anthracene, chrysene, benzo[b]fluoranthene, and benzo[a]pyrene [BaP])—generated during the manufacture of sesame oil was evaluated. In this study, eulalia (Miscanthus sinensis var. purpurascens)-based cellulosic aerogel (adsorbent) was prepared and used high performance liquid chromatography with fluorescence detection for determination of PAHs in sesame oil. In addition, changes in the sesame oil quality parameters (acid value, peroxide value, color, and fatty acid composition) following cellulosic aerogel treatment were also evaluated. The four PAHs and their total levels decreased in sesame oil samples roasted under different conditions (p < 0.05) following treatment with cellulosic aerogel. In particular, highly carcinogenic BaP was not detected after treatment with cellulosic aerogel. Moreover, there were no noticeable quality changes in the quality parameters between treated and control samples. It was concluded that eulalia-based cellulosic aerogel proved suitable for the reduction of PAHs from sesame oil and can be used as an eco-friendly adsorbent.


2021 ◽  
Vol 170 ◽  
pp. 112529
Author(s):  
N. Cruz ◽  
A.J.N. Batista ◽  
J.M. Cardoso ◽  
B.B. Carvalho ◽  
P.F. Carvalho ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1399
Author(s):  
Karina Yévenes ◽  
Ekaterina Pokrant ◽  
Lina Trincado ◽  
Lisette Lapierre ◽  
Nicolás Galarce ◽  
...  

Tetracyclines, sulphonamides, and quinolones are families of antimicrobials (AMs) widely used in the poultry industry and can excrete up to 90% of AMs administrated, which accumulate in poultry litter. Worryingly, poultry litter is widely used as an agriculture fertilizer, contributing to the spread AMs residues in the environment. The aim of this research was to develop a method that could simultaneously identify and quantify three AMs families in poultry litter by high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS). Samples of AMs free poultry litter were used to validate the method according to 657/2002/EC and VICH GL49. Results indicate that limit of detection (LOD) ranged from 8.95 to 20.86 μg kg−1, while limits of quantitation (LOQ) values were between 26.85 and 62.58 µg kg−1 of tetracycline, 4-epi-tetracycline, oxytetracycline, 4-epi-oxytetracycline, enrofloxacin, ciprofloxacin, flumequine, sulfachloropyridazine, and sulfadiazine. Recoveries obtained ranged from 93 to 108%. The analysis of field samples obtained from seven commercial poultry flocks confirmed the adequacy of the method since it detected means concentrations ranging from 20 to 10,364 μg kg−1. This provides us an accurate and reliable tool to monitor AMs residues in poultry litter and control its use as agricultural fertilizer.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1382
Author(s):  
Xiaoying Deng ◽  
Huazhang Li ◽  
Mingcheng Zhu

Based on the idea of bisection method, a new structure of All-Digital Phased-Locked Loop (ADPLL) with fast-locking is proposed. The structure and locking method are different from the traditional ADPLLs. The Control Circuit consists of frequency compare module, mode-adjust module and control module, which is responsible for adjusting the frequency control word of digital-controlled-oscillator (DCO) by Bisection method according to the result of the frequency compare between reference clock and restructure clock. With a high frequency cascade structure, the DCO achieves wide tuning range and high resolution. The proposed ADPLL was designed in SMIC 180 nm CMOS process. The measured results show a lock range of 640-to-1920 MHz with a 40 MHz reference frequency. The ADPLL core occupies 0.04 mm2, and the power consumption is 29.48 mW, with a 1.8 V supply. The longest locking time is 23 reference cycles, 575 ns, at 1.92 GHz. When the ADPLL operates at 1.28 GHz–1.6 GHz, the locking time is the shortest, only 9 reference cycles, 225 ns. Compared with the recent high-performance ADPLLs, our design shows advantages of small area, short locking time, and wide tuning range.


2006 ◽  
Vol 55 (5) ◽  
pp. 1725-1733 ◽  
Author(s):  
P.G. Papageorgas ◽  
D. Maroulis ◽  
G. Anagnostopoulos ◽  
H. Albrecht ◽  
B. Wagner ◽  
...  

2014 ◽  
Vol 875-877 ◽  
pp. 2097-2106
Author(s):  
Rai Wung Park

The transit motion and the rotating motion have highly different effects in a technical systems and have almost nonlinear system behaviors. For the descriptions of their dynamical causes and effects on system, the physical information, which is concerned as a nonlinear mathematic model, has been used. But the corresponding equations are generally not easy to solve in complete form or their solutions are so complicated to see through the coherence. A common way to settle such a problem is to linearize system exactly in a state space or on a operating points with Taylor's series approximately. An advanced method to an approximation is a bilinear system that offers global separations principle. In this paper, an extended application of this theory is given in a modeling and control on the electro hydrostatic cylinder driver with both the transit and rotating motions for the keel system that mostly have not only advantage of high performance, small volume of building and weight but also high nonlinear behavior.


Sign in / Sign up

Export Citation Format

Share Document