scholarly journals MASK GENERATOR FOR ORTHOGONAL REGULAR MESH

Author(s):  
Vladislav Sereda ◽  
Maya Ambrozhevich

Existing mesh generators are focused mainly on obtaining non-orthogonal irregular grids designed to describe the curved boundaries of streamlined bodies. However, the thickening of the grid leads to an increase in the calculation time, and the non-conformity of the grid leads to unphysical effects. The software package (SP) developed by the authors for the simulation of gas-thermodynamic processes is oriented toward a much simpler description of the geometry, i. e., uses a different principle of increasing the smoothness of the solution in places with a complex surface structure. This principle consists in superimposing on the flow such sources of momentum and energy, which are equivalent in their effect on the flow to the interaction with the solid wall. SP contains a mask generator of an orthogonal regular grid. The initial data for building the mask is a 3D model created in any CAD application, which is saved in the STL format and placed in the project directory. Each cell contains information about the presence of a three-dimensional solid, the permeability of each face of the hexahedron, and the direction of the normal vector to the streamlined surface. In this regard, the generator creates three types of masks: volumetric, surface full and incomplete permeability, as well as a mask of guiding cosines. To obtain a volume (solid) mask from the center of each cell along the axes, a straight line is drawn and its intersection is checked with each triangle approximating the surface of the body under study. An odd number of intersections of triangles and a straight line indicates the presence of a volume mask in the cells. A surface impermeable mask is formed in three directions at the free cell section and the occupied volume mask. If it is necessary to introduce a semipermeable mask, its localization and measure are assigned by the user. The mask of the guiding cosines is assigned in the cell, which is adjacent to the surface impermeable mask. The values of the guiding cosines are assigned equal to the corresponding values of the nearby triangle approximating the surface of the 3D model. The generated masks are formed as separate files. A SolidWorks application has been developed that allows for volumetric visualization. In the decisive program, the information about the presence of the volume mask is used as follows: the volume mask is excluded from the solution area, self-similar problems are solved near the surface, and if there are guiding properties, an isentropic flow rotation is performed.

2021 ◽  
Author(s):  
Shan Wang ◽  
C. Guedes Soares

Abstract Three-dimensional effects on slamming loads predictions of a ship section are investigated numerically using the unsteady incompressible Reynolds-Average Navier-Stokes (RANS) equations and volume of fluid (VOF) method, which are implemented in interDyMFoam solver in open-source library OpenFoam. A convergence and uncertainty study is performed considering different resolutions and constant Courant number (CFL) following the ITTC guidelines. The numerical solutions are validated through comparisons of slamming loads and motions between the CFD simulations and the available experimental values. The total slamming force and slamming pressures on a 2D ship section and the 3D model are compared and discussed. Three-dimensional effects on the sectional force and the pressures are quantified both in transverse and longitudinal directions of the body considering various entry velocities. The non-dimensional pressure coefficient distribution on the 3D model is presented.


2022 ◽  
Vol 2160 (1) ◽  
pp. 012012
Author(s):  
An Qu ◽  
Tianmin Guan ◽  
Tianxiang Gan ◽  
Yuanyuan Li ◽  
Zhuang Lin ◽  
...  

Abstract In this paper, Mimics is using to reconstruct the 3D model of hemangioma from 2D cerebral angiography images. The process of 3D model reconstruction is formulated. The hemangioma model is extracted and the parameters of the hemangioma are measured, which provided a model basis for the structural design of the spring coil. The shape and structure of the coil are very important for the therapeutic effect. During the treatment, the coil is implanted into the hemangioma from outside the body through a catheter.


2018 ◽  
Vol 24 (6) ◽  
pp. 676-683
Author(s):  
Yuzhou Fan ◽  
Djordje Antonijević ◽  
Xing Zhong ◽  
Vladimir S. Komlev ◽  
Zhiyu Li ◽  
...  

AbstractThe detailed kinetics study of erythrocyte deformability is useful for the early diagnosis of blood diseases and for monitoring the blood rheology. Present solutions for a three-dimensional (3D) reconstruction of erythrocytes has a limited potential. This study aimed to use erythrocyte transmission electron images (ETIs) to evaluate the morphological relationship between adjacent ETIs and generate erythrocytes 3D model. First, ultrathin serial sections of skeletal muscle tissue were obtained using an ultramicrotome. Further, the set of ETIs in a capillary were captured by transmission electron microscopy. The images were aligned by translations and rotations using custom software to optimize the morphological relationship between adjacent ETIs. These coordinate transformations exploit the unique principal axis of inertia of each image to define the body coordinate system and hence provide the means to accurately reconnect the adjacent ETIs. The sum of the distances between the corresponding points on the boundary of adjacent ETIs was minimized and, further, was optimized by using physiological relationship between the adjacent ETIs. The analysis allowed to define precise virtual relationship between the adjacent erythrocytes. Finally, extracted erythrocytes’ cross-section images allowed to generate 3D model of the erythrocytes.


2002 ◽  
Vol 468 ◽  
pp. 1-28 ◽  
Author(s):  
Q. ZHU ◽  
M. J. WOLFGANG ◽  
D. K. P. YUE ◽  
M. S. TRIANTAFYLLOU

We employ a three-dimensional, nonlinear inviscid numerical method, in conjunction with experimental data from live fish and from a fish-like robotic mechanism, to establish the three-dimensional features of the flow around a fish-like body swimming in a straight line, and to identify the principal mechanisms of vorticity control employed in fish-like swimming. The computations contain no structural model for the fish and hence no recoil correction. First, we show the near-body flow structure produced by the travelling-wave undulations of the bodies of a tuna and a giant danio. As revealed in cross-sectional planes, for tuna the flow contains dominant features resembling the flow around a two-dimensional oscillating plate over most of the length of the fish body. For the giant danio, on the other hand, a mixed longitudinal–transverse structure appears along the hind part of the body. We also investigate the interaction of the body-generated vortices with the oscillating caudal fin and with tail-generated vorticity. Two distinct vorticity interaction modes are identified: the first mode results in high thrust and is generated by constructive pairing of body-generated vorticity with same-sign tail-generated vorticity, resulting in the formation of a strong thrust wake; the second corresponds to high propulsive efficiency and is generated by destructive pairing of body-generated vorticity with opposite-sign tail-generated vorticity, resulting in the formation of a weak thrust wake.


Author(s):  
Bogdan Litvinov ◽  
Mariia Bilova

Relevance of the research work is the analysis of the main features of 3D modeling for further implementation in e-commerce. Namely, the features ofcreating a human body 3D model with the ability to edit personal settings of individual parts of the body, as well as a basic set of clothes to provide amore realistic representation of the model. The features of the 3D model in general were considered in this article. The mathematical analysis of the 3Dgraphics rendering on the 2D monitor and the possibilities of control and editing of such models have been presented. The developed software productallows the user to create an anatomical three-dimensional model of the human body and then adjust it to his needs. The user can apply on createdmodel variety of settings, namely more than 15 different views, with a full package of changes. It is possible to change the size, color of hair,eyebrows, eyes, face, body, legs. Also, the user is able to select the levels of skeletal frame views and additionally can select different backgrounds toprovide a more realistic representation of the model in space. Additional functionality was implemented for more flexible configuration of the model’sface. The user can pre-determine points to select directions or sizes of different parts of the face using settings, displayed on the mouse or touchpadcontrol. After adjustments, the user is able to manage the clothes that he had saved in the shopping cart from the online store, from which he laterproceeded to the online fitting. After the fitting the user can test the creation of animations in 360 degrees of free movement. Finally, the user can go tothe store to pay for the items he left in the shopping cart. Developed software allows improving main metrics of the on-line stores, which has a positiveimpact on increasing the growth of earnings.


2011 ◽  
Vol 189-193 ◽  
pp. 1973-1977
Author(s):  
Hu Zhao ◽  
San Gen Wang ◽  
Da Ke Wu

It is usually a time-consuming process to set up three-dimensinal(3D) model of mechanical components with complex surface. In order to solve the problem, this paper adopts consumer cameras and the technique of digital close range photogrammetry ( DCRP ) to establish 3D model, and export the data to 3D mechanical design software (SolidWorks) for further simulation and reconstruction. This method has been proved very effective in practise.


Author(s):  
O. Faroon ◽  
F. Al-Bagdadi ◽  
T. G. Snider ◽  
C. Titkemeyer

The lymphatic system is very important in the immunological activities of the body. Clinicians confirm the diagnosis of infectious diseases by palpating the involved cutaneous lymph node for changes in size, heat, and consistency. Clinical pathologists diagnose systemic diseases through biopsies of superficial lymph nodes. In many parts of the world the goat is considered as an important source of milk and meat products.The lymphatic system has been studied extensively. These studies lack precise information on the natural morphology of the lymph nodes and their vascular and cellular constituent. This is due to using improper technique for such studies. A few studies used the SEM, conducted by cutting the lymph node with a blade. The morphological data collected by this method are artificial and do not reflect the normal three dimensional surface of the examined area of the lymph node. SEM has been used to study the lymph vessels and lymph nodes of different animals. No information on the cutaneous lymph nodes of the goat has ever been collected using the scanning electron microscope.


2021 ◽  
Vol 29 ◽  
pp. 133-140
Author(s):  
Bin Liu ◽  
Shujun Liu ◽  
Guanning Shang ◽  
Yanjie Chen ◽  
Qifeng Wang ◽  
...  

BACKGROUND: There is a great demand for the extraction of organ models from three-dimensional (3D) medical images in clinical medicine diagnosis and treatment. OBJECTIVE: We aimed to aid doctors in seeing the real shape of human organs more clearly and vividly. METHODS: The method uses the minimum eigenvectors of Laplacian matrix to automatically calculate a group of basic matting components that can properly define the volume image. These matting components can then be used to build foreground images with the help of a few user marks. RESULTS: We propose a direct 3D model segmentation method for volume images. This is a process of extracting foreground objects from volume images and estimating the opacity of the voxels covered by the objects. CONCLUSIONS: The results of segmentation experiments on different parts of human body prove the applicability of this method.


Author(s):  
So Young Joo ◽  
Seung Yeol Lee ◽  
Yoon Soo Cho ◽  
Sangho Yi ◽  
Cheong Hoon Seo

Abstract Hands are the part of the body that are most commonly involved in burns, and the main complications are finger joint contractures and nerve injuries. Hypertrophic scarring cannot be avoided despite early management of acute hand burn injuries, and some patients may need application of an exoskeleton robot to restore hand function. To do this, it is essential to individualize the customization of the robot for each patient. Three-dimensional (3D) technology, which is widely used in the field of implants, anatomical models, and tissue fabrication, makes this goal achievable. Therefore, this report is a study on the usefulness of an exoskeleton robot using 3D technology for patients who lost bilateral hand function due to burn injury. Our subject was a 45-year-old man with upper limb dysfunction of 560 days after a flame and chemical burn injury, with resultant impairment of manual physical abilities. After wearing an exoskeleton robot made using 3D printing technology, he could handle objects effectively and satisfactorily. This innovative approach provided considerable advantages in terms of customization of size and reduction in manufacturing time and costs, thereby showing great potential for use in patients with hand dysfunction after burn injury.


2021 ◽  
Vol 7 (1) ◽  
pp. 540-555
Author(s):  
Hayley L. Mickleburgh ◽  
Liv Nilsson Stutz ◽  
Harry Fokkens

Abstract The reconstruction of past mortuary rituals and practices increasingly incorporates analysis of the taphonomic history of the grave and buried body, using the framework provided by archaeothanatology. Archaeothanatological analysis relies on interpretation of the three-dimensional (3D) relationship of bones within the grave and traditionally depends on elaborate written descriptions and two-dimensional (2D) images of the remains during excavation to capture this spatial information. With the rapid development of inexpensive 3D tools, digital replicas (3D models) are now commonly available to preserve 3D information on human burials during excavation. A procedure developed using a test case to enhance archaeothanatological analysis and improve post-excavation analysis of human burials is described. Beyond preservation of static spatial information, 3D visualization techniques can be used in archaeothanatology to reconstruct the spatial displacement of bones over time, from deposition of the body to excavation of the skeletonized remains. The purpose of the procedure is to produce 3D simulations to visualize and test archaeothanatological hypotheses, thereby augmenting traditional archaeothanatological analysis. We illustrate our approach with the reconstruction of mortuary practices and burial taphonomy of a Bell Beaker burial from the site of Oostwoud-Tuithoorn, West-Frisia, the Netherlands. This case study was selected as the test case because of its relatively complete context information. The test case shows the potential for application of the procedure to older 2D field documentation, even when the amount and detail of documentation is less than ideal.


Sign in / Sign up

Export Citation Format

Share Document