Chronic Kidney Disease Prediction Using Different Algorithms

Author(s):  
Harsh Vardhan Singh

Chronic Kidney Disease (CKD) is a disease which doesn't shows symptoms at all or in some cases it doesn't show any disease specific symptoms it is hard to predict, detect and prevent such a disease and this could be lead to permanently health damage, but machine learning can be hope in this problem it is best in prediction and analysis. The objective of paper is to build the model for predicting the Chronic Kidney Disease using various machine learning classification algorithm. Classification is a powerful machine learning technique that is commonly used for prediction. Some of the classification algorithm are Logistic Regression, Support Vector Machine, Naïve Bayes, Random Forest Classifier, KNN. This paper investigate which algorithm is used for the improving the accuracy in the prediction of Chronic Kidney Disease. And, a comparative analysis on the accuracy and mean squared error is to done for predicting the best model.

Author(s):  
Ankit Singh

Cardiovascular Disease is the leading cause of death (Approximately, 17 million people every year) in the all the area of the world. Prediction of heart disease is the critical challenge in the area of the clinical data analysis. The objective of paper is to build the model for predicting the Heart Disease using various machine learning classification algorithm. Classification is a powerful machine learning technique that is commonly used for prediction. Some of the classification algorithm are Logistic Regression, Support Vector Machine, Naïve Bayes, Decision Tree, Random Forest Classifier, KNN. This paper investigate which algorithm is used for the improving the accuracy in the prediction of heart disease. And, a comparative analysis on the accuracy and mean squared error is to done for predicting the best model. The result of the study indicates that KNN algorithm is effective in predicting the model with the accuracy of the 85.71% and having a very low mean squared error.


2022 ◽  
pp. ASN.2021040538
Author(s):  
Arthur M. Lee ◽  
Jian Hu ◽  
Yunwen Xu ◽  
Alison G. Abraham ◽  
Rui Xiao ◽  
...  

BackgroundUntargeted plasma metabolomic profiling combined with machine learning (ML) may lead to discovery of metabolic profiles that inform our understanding of pediatric CKD causes. We sought to identify metabolomic signatures in pediatric CKD based on diagnosis: FSGS, obstructive uropathy (OU), aplasia/dysplasia/hypoplasia (A/D/H), and reflux nephropathy (RN).MethodsUntargeted metabolomic quantification (GC-MS/LC-MS, Metabolon) was performed on plasma from 702 Chronic Kidney Disease in Children study participants (n: FSGS=63, OU=122, A/D/H=109, and RN=86). Lasso regression was used for feature selection, adjusting for clinical covariates. Four methods were then applied to stratify significance: logistic regression, support vector machine, random forest, and extreme gradient boosting. ML training was performed on 80% total cohort subsets and validated on 20% holdout subsets. Important features were selected based on being significant in at least two of the four modeling approaches. We additionally performed pathway enrichment analysis to identify metabolic subpathways associated with CKD cause.ResultsML models were evaluated on holdout subsets with receiver-operator and precision-recall area-under-the-curve, F1 score, and Matthews correlation coefficient. ML models outperformed no-skill prediction. Metabolomic profiles were identified based on cause. FSGS was associated with the sphingomyelin-ceramide axis. FSGS was also associated with individual plasmalogen metabolites and the subpathway. OU was associated with gut microbiome–derived histidine metabolites.ConclusionML models identified metabolomic signatures based on CKD cause. Using ML techniques in conjunction with traditional biostatistics, we demonstrated that sphingomyelin-ceramide and plasmalogen dysmetabolism are associated with FSGS and that gut microbiome–derived histidine metabolites are associated with OU.


2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Hye-Jin Kim ◽  
Sung Min Park ◽  
Byung Jin Choi ◽  
Seung-Hyun Moon ◽  
Yong-Hyuk Kim

We propose three quality control (QC) techniques using machine learning that depend on the type of input data used for training. These include QC based on time series of a single weather element, QC based on time series in conjunction with other weather elements, and QC using spatiotemporal characteristics. We performed machine learning-based QC on each weather element of atmospheric data, such as temperature, acquired from seven types of IoT sensors and applied machine learning algorithms, such as support vector regression, on data with errors to make meaningful estimates from them. By using the root mean squared error (RMSE), we evaluated the performance of the proposed techniques. As a result, the QC done in conjunction with other weather elements had 0.14% lower RMSE on average than QC conducted with only a single weather element. In the case of QC with spatiotemporal characteristic considerations, the QC done via training with AWS data showed performance with 17% lower RMSE than QC done with only raw data.


Author(s):  
Pedro Pedrosa Rebouças Filho ◽  
Suane Pires Pinheiro Da Silva ◽  
Jefferson Silva Almeida ◽  
Elene Firmeza Ohata ◽  
Shara Shami Araujo Alves ◽  
...  

Chronic kidney diseases cause over a million deaths worldwide every year. One of the techniques used to diagnose the diseases is renal scintigraphy. However, the way that is processed can vary depending on hospitals and doctors, compromising the reproducibility of the method. In this context, we propose an approach to process the exam using computer vision and machine learning to classify the stage of chronic kidney disease. An analysis of different features extraction methods, such as Gray-Level Co-occurrence Matrix, Structural Co-occurrence Matrix, Local Binary Patters (LBP), Hu's Moments and Zernike's Moments in combination with machine learning methods, such as Bayes, Multi-layer Perceptron, k-Nearest Neighbors, Random Forest and Support Vector Machines (SVM), was performed. The best result was obtained by combining LBP feature extractor with SVM classifier. This combination achieved accuracy of 92.00% and F1-score of 91.00%, indicating that the proposed method is adequate to classify chronic kidney disease in two stages, being a high risk of developing end-stage renal failure and other outcomes, and otherwise.


Author(s):  
Ahmed Hassan Mohammed Hassan ◽  
◽  
Arfan Ali Mohammed Qasem ◽  
Walaa Faisal Mohammed Abdalla ◽  
Omer H. Elhassan

Day by day, the accumulative incidence of COVID-19 is rapidly increasing. After the spread of the Corona epidemic and the death of more than a million people around the world countries, scientists and researchers have tended to conduct research and take advantage of modern technologies to learn machine to help the world to get rid of the Coronavirus (COVID-19) epidemic. To track and predict the disease Machine Learning (ML) can be deployed very effectively. ML techniques have been anticipated in areas that need to identify dangerous negative factors and define their priorities. The significance of a proposed system is to find the predict the number of people infected with COVID19 using ML. Four standard models anticipate COVID-19 prediction, which are Neural Network (NN), Support Vector Machines (SVM), Bayesian Network (BN) and Polynomial Regression (PR). The data utilized to test these models content of number of deaths, newly infected cases, and recoveries in the next 20 days. Five measures parameters were used to evaluate the performance of each model, namely root mean squared error (RMSE), mean squared error (MAE), mean absolute error (MSE), Explained Variance score and r2 score (R2). The significance and value of proposed system auspicious mechanism to anticipate these models for the current cenario of the COVID-19 epidemic. The results showed NN outperformed the other models, while in the available dataset the SVM performs poorly in all the prediction. Reference to our results showed that injuries will increase slightly in the coming days. Also, we find that the results give rise to hope due to the low death rate. For future perspective, case explanation and data amalgamation must be kept up persistently.


Chronic Kidney Disease (CKD) is a worldwide concern that influences roughly 10% of the grown-up population on the world. For most of the people the early diagnosis of CKD is often not possible. Therefore, the utilization of present-day Computer aided supported strategies is important to help the conventional CKD finding framework to be progressively effective and precise. In this project, six modern machine learning techniques namely Multilayer Perceptron Neural Network, Support Vector Machine, Naïve Bayes, K-Nearest Neighbor, Decision Tree, Logistic regression were used and then to enhance the performance of the model Ensemble Algorithms such as ADABoost, Gradient Boosting, Random Forest, Majority Voting, Bagging and Weighted Average were used on the Chronic Kidney Disease dataset from the UCI Repository. The model was tuned finely to get the best hyper parameters to train the model. The performance metrics used to evaluate the model was measured using Accuracy, Precision, Recall, F1-score, Mathew`s Correlation Coefficient and ROC-AUC curve. The experiment was first performed on the individual classifiers and then on the Ensemble classifiers. The ensemble classifier like Random Forest and ADABoost performed better with 100% Accuracy, Precision and Recall when compared to the individual classifiers with 99.16% accuracy, 98.8% Precision and 100% Recall obtained from Decision Tree Algorithm


Author(s):  
Claire Salkar

Detection of disease at earlier stages is the most challenging one. Datasets of different diseases are available online with different number of features corresponding to a particular disease. Many dimensionalities reduction and feature extraction techniques are used nowadays to reduce the number of features in dataset and finding the most appropriate ones. This paper explores the difference in performance of different machine learning models using Principal Component Analysis dimensionality reduction technique on the datasets of Chronic kidney disease and Cardiovascular disease. Further, the authors apply Logistic Regression, K Nearest Neighbour, Naïve Bayes, Support Vector Machine and Random Forest Model on the datasets and compare the performance of the model with and without PCA. A key challenge in the field of data mining and machine learning is building accurate and computationally efficient classifiers for medical applications. With an accuracy of 100% in chronic kidney disease and 85% for heart disease, KNN classifier and logistic regression were revealed to be the most optimal method of predictions for kidney and heart disease respectively.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Lasini Wickramasinghe ◽  
Rukmal Weliwatta ◽  
Piyal Ekanayake ◽  
Jeevani Jayasinghe

This paper presents the application of a multiple number of statistical methods and machine learning techniques to model the relationship between rice yield and climate variables of a major region in Sri Lanka, which contributes significantly to the country’s paddy harvest. Rainfall, temperature (minimum and maximum), evaporation, average wind speed (morning and evening), and sunshine hours are the climatic factors considered for modeling. Rice harvest and yield data over the last three decades and monthly climatic data were used to develop the prediction model by applying artificial neural networks (ANNs), support vector machine regression (SVMR), multiple linear regression (MLR), Gaussian process regression (GPR), power regression (PR), and robust regression (RR). The performance of each model was assessed in terms of the mean squared error (MSE), correlation coefficient (R), mean absolute percentage error (MAPE), root mean squared error ratio (RSR), BIAS value, and the Nash number, and it was found that the GPR-based model is the most accurate among them. Climate data collected until early 2019 (Maha season of year 2018) were used to develop the model, and an independent validation was performed by applying data of the Yala season of year 2019. The developed model can be used to forecast the future rice yield with very high accuracy.


Author(s):  
Gaurav Singh ◽  
Shivam Rai ◽  
Himanshu Mishra ◽  
Manoj Kumar

The prime objective of this work is to predicting and analysing the Covid-19 pandemic around the world using Machine Learning algorithms like Polynomial Regression, Support Vector Machine and Ridge Regression. And furthermore, assess and compare the performance of the varied regression algorithms as far as parameters like R squared, Mean Absolute Error, Mean Squared Error and Root Mean Squared Error. In this work, we have used the dataset available on Covid-19 Data Repository by the Center for Systems Science and Engineering (CSSE) at John Hopkins University. We have analyzed the covid19 cases from 22/1/2020 till now. We applied a supervised machine learning prediction model to forecast the possible confirmed cases for the next ten days.


Sign in / Sign up

Export Citation Format

Share Document