scholarly journals Experimental Analysis of Self Piercing Riveted Joint

Author(s):  
R. T. Kolhe ◽  
V. L. Kadlag

Joining is an important process in a number of industries, such as aerospace, automotive, oil, and gas. Many products cannot be fabricated as a single piece, so components are fabricated first and assembled later. Joining technology can be classified as a liquid-solid-state process and mechanical means. Liquid-solid-state joining includes welding, brazing, soldering, and adhesive bonding. Mechanical joining includes fasteners, bolts, nuts, and rivets. Metal joining is a process that uses heat to melt or heat metal just below the melting temperature. The main principle is a shear condition of material. In case of shear test of conventional riveting joints, their strength is determined by the mechanical properties of the fastener material is high. Hence, it is expedient to have more insight on the fracture mechanism of various joints during tensile tests. This paper discusses the strength of self piercing rivets of sheet materials that is aluminum alloy, and their arrangements. This thesis presents a study of the effect of controllable self piercing rivet parameters, mainly tensile force, rivet length, rivet diameter tolerance, hole countersunk depth and hole diameter tolerance, on the quality of formed rivet. The quality of a formed rivet is determined by the geometry of its head formation and the extent to which the hole is filled. The study determines. The study is performed using finite element simulation of the riveting process. Theoretical relations between tensile force and formed rivet geometry derived in this study is used to validate the finite element model. Statistical design of experiment is employed to analyze the simulation data of riveting and determine the effect of individual factors, their interactions and relationship with the quality of formed self piercing rivet. The results demonstrate that the correct formation of rivet head geometry depends upon all the factors studied.

Author(s):  
Márton Tamás Birosz ◽  
Mátyás Andó ◽  
Sudhanraj Jeganmohan

AbstractDesigning components is a complex task, which depends on the component function, the raw material, and the production technology. In the case of rotating parts with higher RPM, the creep and orientation are essential material properties. The PLA components made with the material extrusion process are more resistant than VeroWhite (material jetting) and behave similarly to weakly cross-linked elastomers. Also, based on the tensile tests, Young’s modulus shows minimal anisotropy. Multilinear isotropic hardening and modified time hardening models are used to create the finite element model. Based on the measurements, the finite element method simulation was identified. The deformation in the compressor wheel during rotation became definable. It was concluded that the strain of the compressor wheel manufactured with material extrusion technology is not significant.


2012 ◽  
Vol 226-228 ◽  
pp. 281-284
Author(s):  
Li Da Zhu ◽  
Xiao Bang Wang ◽  
Tiao Biao Yu ◽  
Wan Shan Wang

The dynamic characteristics of machine tool may directly affect its machining capability, which is analyzed to improve the machining precision and efficiency. In this paper, the 3D finite element model of main components turn-milling center is established by using ANSYS software, and then spindle box of turn-milling center is analyzed and optimized; the natural frequencies and vibration models are obtained after analysis, which guarantee the design requirement of the machining center. Therefore it is significant to improve the design quality of machining center by using FEA software in the design process.


Author(s):  
Scott D. Ironside ◽  
L. Blair Carroll

Enbridge Pipelines Inc. operates the world’s longest and most complex liquids pipeline network. As part of Enbridge’s Integrity Management Program In-Line Inspections have been and will continue to be conducted on more than 15,000 km of pipeline. The Inspection Programs have included using the most technologically advanced geometry tools in the world to detect geometrical discontinuities such as ovality, dents, and buckles. During the past number of years, Enbridge Pipelines Inc. has been involved in developing a method of evaluating the suitability of dents in pipelines for continued service. The majority of the work involved the development of a method of modeling the stresses within a dent using Finite Element Analysis (FEA). The development and validation of this model was completed by Fleet Technology Limited (FTL) through several projects sponsored by Enbridge, which included field trials and comparisons to previously published data. This model combined with proven fracture mechanics theory provides a method of determining a predicted life of a dent based on either the past or future operating conditions of the pipeline. CSA Standard Z662 – Oil and Gas Pipeline Systems provides criteria for the acceptability of dents for continued service. There have been occurrences, however, where dents that meet the CSA acceptability criteria have experienced failure. The dent model is being used to help define shape characteristics in addition to dent depth, the only shape factor considered by CSA, which contribute to dent failure. The dent model has also been utilized to validate the accuracy of current In-Line Inspection techniques. Typically a dent will lose some of its shape as the overburden is lifted from the pipeline and after the indentor is removed. Often there can be a dramatic “re-rounding” that will occur. The work included comparing the re-rounded dent shapes from a Finite Element model simulating the removal of the constraint on the pipe to the measured dent profile from a mold of the dent taken in the field after it has been excavated. This provided a measure of the accuracy of the tool. This paper will provide an overview of Enbridge’s dent management program, a description of the dent selection process for the excavation program, and a detailed review of the ILI validation work.


2011 ◽  
Vol 70 ◽  
pp. 315-320 ◽  
Author(s):  
Riaz Muhammad ◽  
Agostino Maurotto ◽  
Anish Roy ◽  
Vadim V. Silberschmidt

Analysis of the cutting process in machining of advanced alloys, which are typically difficult-to-machine materials, is a challenge that needs to be addressed. In a machining operation, cutting forces causes severe deformations in the proximity of the cutting edge, producing high stresses, strain, strain-rates and temperatures in the workpiece that ultimately affect the quality of the machined surface. In the present work, cutting forces generated in a vibro-impact and hot vibro-impact machining process of Ti-based alloy, using an in-house Ultrasonically Assisted Turning (UAT) setup, are studied. A three-dimensional, thermo-mechanically coupled, finite element model was developed to study the thermal and mechanical processes in the cutting zone for the various machining processes. Several advantages of ultrasonically assisted turning and hot ultrasonically assisted turning are demonstrated when compared to conventional turning.


2021 ◽  
Author(s):  
Sinan Yıldırım ◽  
Ufuk Çoban ◽  
Mehmet Çevik

Suspension linkages are one of the fundamental structural elements in each vehicle since they connect the wheel carriers i.e. axles to the body of the vehicle. Moreover, the characteristics of suspension linkages within a suspension system can directly affect driving safety, comfort and economics. Beyond these, all these design criteria are bounded to the package space of the vehicle. In last decades, suspension linkages have been focused on in terms of design development and cost reduction. In this study, a control arm of a diesel public bus was taken into account in order to get the most cost-effective design while improving the strength within specified boundary conditions. Due to the change of the supplier, the control arm of a rigid axle was redesigned to find an economical and more durable solution. The new design was analyzed first by the finite element analysis software Ansys and the finite element model of the control arm was validated by physical tensile tests. The outputs of the study demonstrate that the new design geometry reduces the maximum Von Mises stress 15% while being within the elastic region of the material in use and having found an economical solution in terms of supplier’s criteria.


2014 ◽  
Vol 635-637 ◽  
pp. 507-510
Author(s):  
Dong Peng Du ◽  
Zhe Wu ◽  
Juan Xing ◽  
Xiao Yan Gong ◽  
Xiang Wen Miu ◽  
...  

When strong exercise on human being body, respectively, under knees 30°, 60°,90°, using PRO/E5.0 software to establish the transverse patella fracture and anti-shearing force patella claws 3D models, then the two structure models were assembled and imported into ABAQUS10.1 software to establish the finite element model of patellar fracture fixed within patella claw, and analyzed the mechanical performance in perforce finite element model. Under the same boundary conditions, the maximum displacement and deformation of each components were different at every flexion angle. Compared with anti-shearing force patella claw and AO tensile force girdle, the patella claw with stronger resistance to tension and anti-shearing force was more stable. Deformation and displacement of patella claw in accordance with biomechanical research result that is needed by clinical. Its stability will satisfy clinical requirements for functional exercise.


2014 ◽  
Vol 1061-1062 ◽  
pp. 421-426 ◽  
Author(s):  
Panupich Kheunkhieo ◽  
Kiatfa Tangchaichit

The purposes of this research are to explore the baseplate and actuator arm deformation which effect to the gram load which occur in the ball swaging process, the main component determining quality of assembly the head stack assembly with the actuator arm. By shooting a ball though the base plate, the component located on the head stack assembly, the base plate plastic deformation takes place and it in expand in radial direction. The base plate then adjoins with the actuator arm. Using the finite element method to reproduce the ball swaging process, we repeated to study effect of the swage press clamp and velocity. The study done by creating the three dimensionals finite element model to analyze and explain characteristics of the baseplate and actuator arm deformation which effect to gram load which effect to the ball swaging process.


2014 ◽  
Vol 974 ◽  
pp. 389-393 ◽  
Author(s):  
Sen Liu ◽  
Dong Mei Wu ◽  
Jun Zhao

In orthopedic surgery, it is easy to do harm to surrounding tissues, so the study of bone cutting is necessary. In this article, a finite element model (FEM) of orthogonal bone cutting is developed. Cutting force intra-operatively can provide the surgeon with additional on-line information to support him to control quality of cutting surface. The obtained cutting force decreased little with cutting speed increasing, but ascended evidently with cutting depth increasing. The results of finite element simulations are aimed at providing optimization of cutting parameters and the basic information for hybrid force-velocity control of a robot-assisted bone milling system.


2015 ◽  
Vol 76 (10) ◽  
Author(s):  
Nor Fazli Adull Manan ◽  
Jamaluddin Mahmud ◽  
Aidah Jumahat

This paper for the first time attempts to establish the biomechanical characteristics of bovine skin via experiment-theory integration and finite element simulation. 30 specimens prepared from fresh slaughtered bovine were uniaxially stretched in-vitro using tensile tests machine. The experimental raw data are then input into a Matlab programme, which quantified the hyperelastic parameters based on Ogden constitutive equation. It is found that the Ogden coefficient and exponent for bovine skin are μ = 0.017 MPa and α = 11.049 respectively. For comparison of results, the quantified Ogden parameters are then input into a simple but robust finite element model, which is developed to replicate the experimental setup and simulate the deformation of the bovine skin. Results from experiment-theory integration and finite element simulation are compared. It is found that the stress-stretch curves are close to one another. The results and finding prove that the current study is significant and has contributed to knowledge enhancement about the deformation behaviour of bovine skin.


2019 ◽  
Vol 943 ◽  
pp. 75-80
Author(s):  
Fang Bin Lin ◽  
Ying Dai ◽  
Han Yang Li ◽  
Yang Qu ◽  
Wen Xiao Li

Transverse compaction and in-plane shear deformartion are the dominative deformation mode for woven preform during forming process. A full finite element model of the 2.5D woven composites has been established by the computed tomography (CT) in this paper. Based on the energy method, the effective orthotropic/anisotropic stiffness coefficientsCijare calculated by performing a finite element analysis (FEA) of this full cell model. Using this model, the effects of the compaction and shear deformation of the 2.5D woven preform on the composites stiffness are investigated in detail. Compared the results of the static tensile tests, the rationality of the model and the method is verified.


Sign in / Sign up

Export Citation Format

Share Document