scholarly journals Parametric Study of Seismic Response Analysis of High Rise Structure

Author(s):  
Mayuri Chordiya ◽  
S. S. Angalekar

High rise structures with complex planning and irregular vertical elevations are trending nowadays. Such high rise structures are more susceptible to seismic forces which are quite devastating and cause a huge loss to human lives and property. Hence it is very important to study the behavior of such structure to help structural engineers to create better earthquake resistant design. The usefulness of the shear walls in the structural planning of the multistory buildings to resist the lateral forces has been recognized long back. Shear walls also dissipates a great amount of energy if detailed properly, however there are many factors such as placement of shear walls, its thickness, aspect ratio, plan of the building which affects the response of the building towards lateral loads. In the present study attempt is made to study the effect of different location of shear walls on the response of the building in terms of time period and maximum displacement. The detailed investigation is carried out for zone II of Seismic zones of India as per IS 1893 (part 1):2016, considering primary loads (dead, live and seismic loads) and their combinations with appropriate load factor. Analysis is carried out in ETABS 2016. Further a case study of a U-shaped plan is carried out, to reduce the torsional irregularity structural wall system with spandrels and seismic joints were provided at certain locations.

2021 ◽  
Vol 11 (1) ◽  
pp. 6043-6063
Author(s):  
Ali Jafarian ◽  
Seyed Babak Jafarian

Considering the increase in the current construction process and the future needs of Iran, the necessity to use high-rise buildings for reduction in urbanization costs and optimal use of land will be inevitable in the future. The performance of steel plate shear wall system as a modern global system, which has an effective application in high-rise buildings and also brings economic benefits compared to previous systems, is evaluated in this study. Steel Plate Shear Walls (SPSW) are a new type of system resistant to wind and earthquake lateral loads, which dates back to the 1970s. In this research, eight samples of shear wall with various stiffening arrangements and sections with ST37 and ST52 alloys are modeled. To evaluate the nonlinear dynamic analysis, the samples are subjected to the San Fernando earthquake force and are modeled and analyzed by ABAQUS software based on the finite element theory. The results of analyzing the samples indicate better performance of the system with stiffener in both vertical and horizontal directions. Also, the use of sections with ST52 alloy has improved the performance of the shear wall by approximately 40%.


Author(s):  
Siddhesh Bisane

Abstract: Structural analysis is the science of determining the effects of different loads on structures. Structural stability and stiffness are a main concern in any high-rise structures. Shear walls are structural members that are mainly responsible for resisting lateral loads predominant on structures. They are mainly responsible to increase the stiffness, reduce story drift and displacement. In order to have a comprehensive understanding about the contribution of shear wall, following research is carried out. This research involves comparing two G+16 structures; one without a shear wall and one with it. The structure has 4 bays of 3m each along X direction and Z direction. In this, we will see how shear wall resists lateral sway and reduces story drift and increases stiffness. As the height increases, the shear wall absorbs more lateral load than the frame. The software to be used for analysis is STAADPro. Keywords: STAADPro, Stiffness, storey displacement, storey drift.


2016 ◽  
Vol 857 ◽  
pp. 225-230 ◽  
Author(s):  
Ann Thomas Jereen ◽  
Soumya Anand ◽  
Binu M. Issac

With the application of modern technologies in Civil Engineering, construction of high rise buildings with irregular plan configuration is increasing very quickly. Multi-story buildings are prone to lateral loads from wind or earthquake, which necessitates the need of seismic studies. Buildings can be designed to reduce these lateral loads by many methods; which is why the action of structural diaphragms have to be studied. Several studies have shown the effect of plan configuration on base shear, displacement and story drift, torsional buckling. The lateral stiffness of the building frame affects the maximum displacement of the structure due to earthquake. Study is done on various plan configuration buildings and the action of structural diaphragm on its performance during earthquake is studied.


Author(s):  
Shaikh Jafar Shaikh Ismail ◽  
L. G. Patil

In present era, there is a huge scarcity of vacant land led to the development of the high rise structures. For the construction of high rise buildings, normal R.C.C. system is not suitable. These problems can overcome by using flat slab system along with shear wall arrangements. It is very essential that the shear wall position should be appropriate in structure so as to achieve the lateral stiffness and solid structure against lateral loads. In this work, two main factors i.e. with drop panels and without drop panels have been considered for 12 storey structures. In each factor 5 models of various locations of shear wall is taken for consideration. For stabilization of variable parameters such as storey displacement, storey stiffness and storey shear etc the seismic investigation & design of structures had carried out in software ETABS. After performing seismic investigation & design of all the structures, result shows that if we provide shear wall at incorrect or inappropriate locations then it will only increase the dead load and cost of the structure. So the final outcomes we have achieved is to provide shear walls at desired position where lateral loads are more predominantly acting on the structures


2014 ◽  
Vol 651-653 ◽  
pp. 1260-1265
Author(s):  
Xiao Ping Su

With the extensive use of HSC in the tall building and super high-rise building, the harm of HSC subjected to fire has also been increasing. For the concrete structure in the seismic region after fire, its seismic performance after repair directly relates to the structure safety under the action of possible earthquake in the future. Based on the experimental data in the preliminary research, seismic response analysis on the repaired HSC structure after fire was made according to the principle of uniform section. The results indicate that the seismic performance of HSC frame structure repaired by the principle of uniform section can be restored to the level before fire. But we should pay more attention to the interlaminar maximum displacement of fire storey, which should be partly strengthened when necessary.


2012 ◽  
Vol 602-604 ◽  
pp. 1566-1569
Author(s):  
Yun Cheul Choi ◽  
Hyun Ki Choi ◽  
Chang Sik Choi

Generally because of the economic advantage and stable behavior in seismic loading, shearwalls combined with coupling slabs are widely used in high-rise apartment buildings. When analyzing such structures for lateral loads, however, the question of the actual stiffness and strength of the coupling slabs arises. For more accurate analysis approach, an experimental investigation was conducted with half-scale representations of the reinforced concrete shearwalls with the opening and coupled with slabs were subjected to cyclic loads. The test results of opening installed specimen, severe decrease of strength was observed. The decrease of strength of the shear walls by installation of openings shows a great deal of difference compared to previous researches. This is because flexural capacity of the slabs is working as coupling elements for the shear walls. The critical section of coupling slabs that works as coupling elements for shear walls was a little different from the results of previous researches.


Author(s):  
Daisuke Kato ◽  
Shunsuke Otani ◽  
Hideo Katsumata ◽  
Hiroyuki Aoyama

This paper reports the tests of multistorey frames including a base rotating wall under lateral load reversals. The wall base rotation limited the input forces and prevented damage in the wall. The beams, however, were forced to deform much during the wall rotation. The inelastic behaviour of frame members and the uplifting rotation of a structural wall at its base were idealised, and the effect of wall base rotation on frame behaviour was studied through inelastic earthquake response analysis. The base rotating shear walls performed better than or as good as flexural yielding walls.


Author(s):  
Hridya. K

Torsion force is a load that is a applied to a building through torque. The torque applied creates a shear stress. If a torsion force is large enough, it can cause a building to undergo a twisting action. The main aim of the project is to study the effect of location of shear wall on torsional performance of symmetric and asymmetric high-rise building ,post tensioned slabs are being used in the construction of building hence the thesis also analyze these post tensioned slab structures by changing shear wall configuration. Post tensioned slab structures have weak resistance to lateral loads. so to provide stiffness to structures against lateral forces shear walls are used. A study of 30 storey building in zone III, is considered and determine various parameters like base shear, storey drift, and storey displacement.post-tensioning is a mature technology as it provide efficient, economic and elegant structural solutions for a wide range of applications. Post-tensioned flat slab could be a better option compared to RCC flat slab, in respect of the cost of project and time of construction. ETABS 2017 software is used for the analysis.


2014 ◽  
Vol 1020 ◽  
pp. 242-247
Author(s):  
Tigran Dadayan ◽  
Ehsan Roudi

Almost all high-rise buildings have been constructed in the Republic of Armenia for past twenty-five years are Reinforced Concrete (RC) shear wall–frame structures, where shear walls provide most of the stiffness of buildings. The walls in these buildings are designed to sustain earthquake and wind loads. Vulnerability of them during earthquake action depends on many different factors. Some of them are the openings and its location in the walls. Usage of ground stories as parking and garages is demanded large openings in shear walls therefore determination of ultimate sizes of openings is important problems for designers. In this paper, FEM (Finite Element Method) models are used for investigation of stress-strain state of RC wall–frame buildings with various openings in the walls under action of seismic forces. Limitation of size and position of openings are considered in the paper taking into account of building code of Armenia. Various schemes of openings are considered in the article. The existing experimental data of shear walls were performed in various laboratories have been compared with our numerical investigation of RC models based on nonlinear computer analyses. Dynamic analyses of structures using accelerograms are showed sequence of damages in RC wall-frame models. The recommendations for limitation of ratio area of an opening to the whole area of a wall are proposed at the end of the article.


Sign in / Sign up

Export Citation Format

Share Document