scholarly journals PENGARUH KONSENTRASI PEREKAT TEPUNG TAPIOKA DAN PENAMBAHAN KAPUR DALAM PEMBUATAN BRIKET ARANG BERBAHAN BAKU PELEPAH AREN (Arenga pinnata)

2015 ◽  
Vol 4 (2) ◽  
pp. 32-38
Author(s):  
Julham Prasetya Pane ◽  
Erwin Junary ◽  
Netti Herlina

The demand of renewable energy resources has been increasing. Briquette is one of the alternative energy resource which can be produced from utilization of biomass. This research aims to obtain a briquette from sugar palm frond, to obtain the effect of adhesive concentration of cassava starch and addition of lime on the quality of briquettes. This research used the batch method. Research variabels are the adhesive concentration of cassava starch in 0%, 10%, 20% and 30% (w/w) and the addition of lime in 0%, 1%, 3% and 5% (w/w) based on the weight of char powder. General materials are sugar palm (Arenga pinnata) frond, cassava starch and lime, and the general tools are furnace, briquette printer, oven, moisture analyzer, universal testing machine and bomb calorimeter. Briquetting process was started with sugar palm fronds preparation then they’re carbonized at 350 oC for 2 hours. Product of carbonization as a charcoal which is added by a cassava starch adhesive and lime then they’re printed or shaped and dried to be a briquette. Analysis used is the proximate analysis of the test parameters moisture content, ash content, volatile combustion matter content, carbon content, calorific value and compressive strength. The best briquette is with adhesive concentration in 0% and addition of lime in 5% with the calorific value 6502,379 cal/g, 45,56% fixed carbon, 6,44% moisture, 18,00% ash, 30,00% volatile combustion matter and 59,141 kg/cm2 compressive strength.

2021 ◽  
Vol 13 (6) ◽  
pp. 3069 ◽  
Author(s):  
Anwar Ameen Hezam Saeed ◽  
Noorfidza Yub Harun ◽  
Muhammad Roil Bilad ◽  
Muhammad T. Afzal ◽  
Ashak Mahmud Parvez ◽  
...  

An agricultural waste-based source of energy in the form of briquettes from rice husk has emerged as an alternative energy source. However, rice husk-based briquette has a low bulk density and moisture content, resulting in low durability. This study investigated the effect of initial moisture contents of 12%, 14%, and 16% of rice husk-based briquettes blended with 10 wt% of kraft lignin on their chemical and physical characteristics. The briquetting was done using a hand push manual die compressor. The briquette properties were evaluated by performing chemical (ultimate and proximate analysis, thermogravimetric analysis), physical (density, durability, compressive strength, and surface morphology) analyses. The durability values of all briquette samples were above 95%, meeting the standard with good compressive strength, surface morphology, and acceptable density range. The briquette made from the blend with 14% moisture content showed the highest calorific value of 17.688 MJ kg−1, thanks to its desirable morphology and good porosity range, which facilitates the transport of air for combustion. Overall, this study proved the approach of enhancing the quality of briquettes from rice husk by controlling the moisture content.


2021 ◽  
Vol 22 (2) ◽  
pp. 10-20
Author(s):  
Amadou Dioulde Donghol Diallo ◽  
Ma’an Fahmi Rashid Alkhatib ◽  
Md Zahangir Alam ◽  
Maizirwan Mel

Empty fruit bunch (EFB), a biomass-based waste, was deemed a potential replacement for fossil fuel. It is renewable and carbon neutral. The efficient management of this potential energy will help to deal with the problem associated with fossil fuels. However, a key parameter for evaluating the quality of raw material (EFB) as a fuel in energy applications is the calorific value (CV). When this CV is low, then its potential utilization as feedstock will be restricted. To tackle this shortcoming, we propose to add municipal solid waste to enhance energetic value. Thus, two major issues will be solved: managing solid residues and contributing an alternative energy source. This study aimed to investigate the possibility of mixing EFB and municipal solid waste (MSW) to make clean energy that is conscious of the environment (climate change) and sustainable development. The selected MSW, comprising of plastics, textiles, foam, and cardboard, were mixed, with EFB at various ratios. Proximate analysis was used to determine moisture content, ash, volatiles, and fixed carbon, whilst elemental analysis, is used to determine CHNS/O for MSW, EFB and their various mixtures. The CV of each element was also measured. The research revealed a significant increase in the calorific value of EFB by mixing it with MSW according to MSW/EFB ratios: 0.25; 0.42; 0.66; 1.00 and 1.50 the corresponding calorific values in (MJ/kg) were 19.77; 21.22; 22.67; 27.04 and 28.47 respectively. While the calorific value of pure EFB was 16.86 MJ/kg, the mixing of EFB with MSW promoted the increase in the CV of EFB to an average of 23.83MJ/kg. Another potential environmental benefit of applying this likely fuel was the low chlorine (0.21 wt. % to 0.95 wt. %) and sulfur concentrations (0.041 wt. % to 0.078 wt.%). This potential fuel could be used as solid refuse fuel (SRF) or refuse-derived fuel (RDF) in a pyrolysis or gasification process with little to no environmental effects. ABSTRAK: Tandan buah kosong (EFB), sisa berasaskan biojisim, adalah berpotensi sebagai pengganti bahan bakar fosil. Ia boleh diperbaharui dan karbon neutral. Pengurusan berkesan pada potensi tenaga ini dapat membantu mengatasi masalah melibatkan bahan bakar fosil. Namun, kunci parameter bagi menilai kualiti bahan mentah (EFB) sebagai bahan bakar dalam aplikasi tenaga adalah nilai kalori (CV). Apabila CV rendah, potensi menjadi stok suapan adalah terhad. Sebagai penyelesaian, kajian ini mencadangkan sisa pepejal bandaran ditambah bagi meningkatkan nilai tenaga. Oleh itu, dua isu besar dapat diselesaikan: mengurus sisa pepejal dan menambah sumber tenaga alternatif. Kajian ini bertujuan mengkaji potensi campuran tandan buah kosong (EFB) dan sisa pepejal bandaran (MSW) bagi menghasilkan tenaga bersih dari sudut persekitaran (perubahan iklim) dan pembangunan lestari. Pemilihan MSW, terdiri daripada plastik, tekstil, gabus dan kadbod, dicampurlan dengan pelbagai nisbah EFB. Analisis proksimat telah digunakan bagi mendapatkan  kandungan kelembapan, abu, ruapan, dan karbon tetap, manakala analisis asas telah digunakan bagi mendapatkan CHNS/O bersama MSW, EFB dan pelbagai campuran lain. Nilai kalori (CV) setiap elemen turut diukur. Dapatan kajian menunjukkan penambahan ketara dalam nilai kalori EFB dengan campuran bersama MSW berdasarkan nisbah MSW/EFB 0.25; 0.42; 0.66; 1.00 dan 1.50 nilai kalori sepadan (MJ/kg) adalah 19.77; 21.22; 22.67; 27.04 dan 28.47 masing-masing. Manakala nilai kalori EFB tulen adalah 16.86 MJ/kg, campuran EFB dan MSW menunjukkan kenaikan CV dengan EFB pada purata 23.83MJ/kg. Antara potensi semula jadi lain adalah dengan mencampurkan bahan bakar ini dengan kalori rendah (0.21 wt. % kepada 0.95 wt. %) dan kepekatan sulfur (0.041 wt. % kepada 0.078 wt.%). Bahan bakar ini berpotensi sebagai bahan bakar pepejal sampah (SRF) atau bahan bakar yang terhasil dari pepejal sampah (RDF) melalui proses pirolisis atau proses gasifikasi yang sedikit atau tiada kesan langsung terhadap persekitaran.


2020 ◽  
Vol 10 (2) ◽  
pp. 17-22
Author(s):  
Alpian ◽  
Raynold Panjaitan ◽  
Adi Jaya ◽  
Yanciluk ◽  
Wahyu Supriyati ◽  
...  

Charcoal briquettes can be an alternative energy and can be produced from Gerunggang and Tumih types of wood. These two types of wood are commonly found in Kalampangan Village as pioneer plants on burned peatlands. The research objective was to determine the chemical properties of charcoal briquettes produced from biomass waste from land processing without burning with several compositions of Gerunggang wood and Tumih wood. The chemical properties of charcoal briquettes refer to the Indonesian National Standard (SNI 01-6235-2000) and Standard Permen ESDM No. 047 of 2006. The results showed that all composition treatments in the ash content test, fixed carbon content and calorific value met the standards, while the test for volatile content in all treatment compositions did not meet the Indonesian National Standard (SNI 01-6235-2000). The composition of the most potential chemical properties and following the two standards used is the composition of 100% Tumih with ash content of 7.67%, volatile matter content of 27.23%, fixed carbon of 55.00%, and heating value of 5902.18 cal/g.


INFO-TEKNIK ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 75
Author(s):  
Muhammad Nizar Ramadhan ◽  
Andy Nugraha

The solution to reduce the use of fossil fuels is by utilizing renewable energy such as solar power, wind power, and hydropower, as well as the utilization of other alternative energy derived from biomass. One of alternative energy from biomass that is very potential is briquettes. Tapuk Village, Limpasu Subdistrict, Hulu Sungai Tengah Regency is one of the producers of Alaban wood charcoal, with grade D charcoal in the form of charcoal flakes and is often regarded as waste. This study aims to determine the physical properties of alaban wood charcoal waste briquettes which include water content, ash content, volatile matter content, fixed carbon content, and calorific value, as well as the potential utilization of alaban wood charcoal waste briquettes. so that residents can use Tapuk Village, Limpasu District, Hulu Sungai Tengah Regency as an alternative fuel to substitute kerosene and LPG. The results showed the physical properties of alaban wood charcoal waste briquettes for 3.66 % water content, 3.15 % ash content, 14.31 % volatile matter content, 78.88% fixed carbon content, 6.259.33 cal / gr calorific value. The use of alaban wood charcoal waste briquettes is able to produce consumption costs efficiency of 60% better than the use of LPG and 70% better than the use of kerosene.


2018 ◽  
Vol 2 (2) ◽  
pp. 93-103
Author(s):  
Ade Ariesmayana ◽  
Fitri Dwirani

ABSTRAK Penelitian ini memberikan solusi dalam alternatif energi terbarukan dengan memanfaatkan sampah kota (municipal solid waste) dari sumber Tempat Pembuangan Akhir  Sampah (TPA) Cilowong, Kota Serang. Penelitian ini bertujuan untuk menguji karakteristik sampah Kota Serang, yang meliputi Uji  Proksimat (proximate analysis), Uji Ultimat (ultimate analysis), Kadar Air Sampah dan Uji Nilai Kalor, serta mengetahui seberapa potensialkah timbulan sampah Kota Serang sebagai energi alternatif pengganti bahan bakar fosil. Penelitian dilakukan pada kawasan TPA Cilowong, Kota Serang. Pada laporan ini dibatasi hanya pada perhitungan Kadar Air Sampah. Metode penelitian yang  digunakan adalah dengan pengujian laboratorium dan analisis kelayakan karakteristik sampah. Teknik penelitian yaitu  dengan melakukan survei dan obervasi ke TPAS Cilowong serta wawancara mendalam dengan dinas terkait dan masyarakat yang tinggal di sekitar kawasan tersebut. Hasil penelitian ini adalah kelayakan sampah kota Serang sebagai energi alternatif pengganti bahan bakar fosil.   Kata Kunci: Energi Alternatif, Kadar Air Sampah, TPA Cilowong     ABSTRACT This research provides solutions in alternative renewable energy by utilizing municipal solid waste from the source of the Cilowong Waste Disposal Site (TPA), Serang City. This study aims to examine the characteristics of the city of Serang waste, which includes the Proximate Test (proximate analysis), Ultimate Analysis, Waste Water Content and Calorific Value Test, and find out the potential waste generation of Serang City as an alternative energy to replace fossil fuels. The study was conducted in the Cilowong landfill area, Serang City. This report is limited only to the calculation of Waste Water Content. The research method used is laboratory testing and analysis of the characteristics of waste characteristics. The research technique is by conducting surveys and observations to the Cilowong TPAS as well as in-depth interviews with related agencies and the people living around the area. The results of this study are the feasibility of municipal waste as an alternative energy substitute for fossil fuels.   Keywords: Alternative Energy, Waste Water Content, Cilowong Landfill


2021 ◽  
Author(s):  
Ayesha Siddiqua ◽  
Sweekrity Kanodia ◽  
Jincy Jacob ◽  
Darwilin Khumanthem ◽  
Keke Thakhell ◽  
...  

ABSTRACTThe inadequate sources of energy coupled with the increasing demands of power have necessitated the search for novel renewable energy resources. ‘Phumdis’ are one such promising alternative. Phumdis are floating mats of heterogeneous mass of vegetation, soil and organic matter found in Loktak Lake in Manipur, North Eastern India. This paper delineates the use of Phumdis as an alternative energy source. Phumdis from Loktak Lake, Manipur were processed and analyzed for their biofuel capabilities. The Results indicate that the phumdis have high calorific content, cloudpoint and flash point indicating that they are at par with other fuels.


2019 ◽  
Vol 1 (1) ◽  
pp. 14-20
Author(s):  
Herlina Anggriani Marbun ◽  
Giyanto . ◽  
Hardiansyah Sinaga

Fluctuations in fuel prices stimulate efforts to find alternative energy that is environmentally friendly. The processing of oil palm plantations produces waste or quite a lot of products ± 23% of the weight of fresh fruit bunches. Utilization of Palm Empty Fruit Bunch (PEFB) as biobriquettes was chosen in this study by mixing other ingredients, namely coconut shell. The treatment in the study was the composition of the mixture of PEFB and shell PEFB-1, PEFB-2, PEFB-3, PEFB-4 and PEFB-5 with a ratio of weight (100% -0%), (75% -25%), (50% -50%), (25% -75%) and     (0% -100%). The research was carried out in Medan STIPAP, ITM Laboratory and PTKI Alboratorium in April - September 2018. Observation parameters were heating value, water content, ash content, density, compressive strength and combustion rate. The results showed that briquettes with dominant PEFB material, PEFB-1 and PEFB-2, produced less quality biobriquettes, especially low calorific value. The best treatment is PEFB-4 (25% EFB and 75% shell) with characters that appropriate to the specifications of the quality standard of charcoal briquettes. 


Author(s):  
Gagee Raut ◽  
Navid Goudarzi

Growing concerns about global warming and depletion of fossil fuel have resulted in exploring alternative energy solutions such as renewable energy resources. Among those, marine and hydrokinetic and in particular wave energy have drawing more interest. Ocean waves are predictable, less variable, and offer higher energy density values. As per National Oceanic and Atmospheric Administration (NOAA), North Carolina ranks 6th with total 484 km coastline length. In this work, six-year National Data Buoy Center (NDBC) wave data from five stations along the North Carolina shore including Wilmington Harbor, Mansonboro Inlet, Oregon Inlet, and Duck FRF (17 and 26 m) are collected. The wave parameters such as wave height and period are analyzed and the potential wave power density values are calculated. The power production from the resource is estimated using wave energy converters. Storing excess energy in the form of hydrogen can be used for a variety of applications. Hence, the cost-performance analysis using the cost per unit method is conducted to obtain the maximum and average hydrogen production from the studied site. The results will be useful to a wide range of development activities in both academia and industry.


2013 ◽  
Vol 390 ◽  
pp. 333-337 ◽  
Author(s):  
Mehran Qate ◽  
Majid Pourabdian ◽  
Alireza Javareshkian ◽  
Ali Farzbod

Increasing rate of demanding biodiesel as alternative energy resource, persuade researchers to investigate engine performance of biodiesel-fueled engines, which are highly influenced by ignition delay (ID) and combustion characteristics of such a fuel. This review article introduces a literature review on ignition delay (ID) and combustion characteristics of diesel engine fueled with biodiesel. Slightly difference between combustion characteristics of bio fueled engine and petroleum diesel one recognized as result of carried out investigations. Early start of combustion (SOC) and shorter ID of biodiesel comparing to diesel is reported by most of investigations. Lower compressibility, higher Cetane Number (CN) and fatty acid composition of biodiesel have been recognized as the principle elements of early SOC and shorter ID. It is also revealed that heat release rate (HRR) of biodiesel comparing to diesel is slightly lower because of lower calorific value, shorter ID and higher viscosity.


2015 ◽  
Vol 12 (4) ◽  
pp. 347-352 ◽  
Author(s):  
R. Arul Kumar ◽  
H. Kanaga Sabapathy ◽  
I. Neethimanickam

The present study deals with determination of physical, mechanical and combustion characteristics like mass, density, compressive strength, shearing strength, moisture content, total ash content, fixed carbon, volatile matter, gross calorific value of Sawdust briquette. Briquette quality is evaluated mainly by briquette density. Briquette density is very important from the viewpoint of manipulation, burning speed, briquette durability, etc. During our research, theoretical analyses of parameters which have an impact on briquette quality were conducted. The sawdust sample produced using super-70 piston press machine. The compression test and shear test were conducted for three sawdust sample using compression testing machine. For quality and durability evaluation of the manufactured briquette the density and strength properties were determined. To determine the calorific value and proximate analysis of the briquette using the tests carried out in the lab.


Sign in / Sign up

Export Citation Format

Share Document