scholarly journals PHYSICOMECHANICAL PROPERTIES OF NANOCOMPOSITES BASED ON COPOLYMERS OF ETHYLENE WITH α-OLEFINS AND CLINOPTILOLITE

2020 ◽  
pp. 22-27
Author(s):  
N.T. Kakhramanov ◽  
◽  
I.V. Bayramova ◽  
V.S. Osipchik ◽  
A.D. Ismayilzade ◽  
...  

The results of studying the effect of clinoptilolite concentration on the properties of nanocomposites based on of ethylene with butylene and of ethylene with hexene copolymer are presented. The effect of clinoptilolite particle size on ultimate tensile stress, elongation at break, flexural modulus, heat resistance, and melt flow index of composites was studied. It is shown that nanocomposites based on ethylene copolymers are characterized by higher values of physicomechanical properties. The additional use of ingredients such as alizarin and calcium stearate contributes to a significant improvement in the complex of properties of nanocomposites based on ethylene copolymers and clinoptilolite

Author(s):  
Khayala V. Allakhverdieva

The paper presents the results of a study of the effect of copper concentration on the physicomechanical properties of composites based on high density polyethylene and low density polyethylene. The properties of metal-filled composites, such as ultimate tensile stress, elongation at break, elastic module, melt flow rate, and heat resistance, were studied. Loading of copper into the composition of low density polyethylene contributes to a monotonic increase in the ultimate tensile stress and the elastic module. When copper is loading into the composition of high density polyethylene, on the contrary, a natural decrease in the ultimate tensile stress and elongation at break of the composites is observed. It is shown that when using a compatibilizer, which is polyethylene modified with maleic anhydride, a significant increase in the ultimate tensile stress of high and low density polyethylene composites is observed. A schematic representation of the structure of composites with an interpretation of the probable mechanism of hardening of the material in the presence of a compatibilizer is given. It is shown that the crystallinity of the initial polyethylene has a significant effect on the hardening effect of composites. It is assumed that polyethylene of high density macrochains free of maleic anhydride are involved in the formation of crystalline formations, and small sections of macrosegments containing polar groups are concentrated mainly in amorphous regions and in defects in crystalline structures in the form of passage chains. The concentration of copolymer of polyethylene with maleic anhydride macrosegments in the narrow amorphous space of polyethylene of high density favorably affects the increase in the adhesive forces of interaction on the surface of copper particles, which affects the preservation of the ultimate tensile stress at a relatively high level over a wide range of copper concentrations.


2021 ◽  
Vol 22 (14) ◽  
pp. 7438
Author(s):  
Paulina Kasprzyk ◽  
Ewa Głowińska ◽  
Paulina Parcheta-Szwindowska ◽  
Kamila Rohde ◽  
Janusz Datta

This study concerns green thermoplastic polyurethanes (TPU) obtained by controlling the chemical structure of flexible segments. Two types of bio-based polyether polyols—poly(trimethylene glycol)s—with average molecular weights ca. 1000 and 2700 Da were used (PO3G1000 and PO3G2700, respectively). TPUs were prepared via a two-step method. Hard segments consisted of 4,4′-diphenylmethane diisocyanates and the bio-based 1,4-butanodiol (used as a chain extender and used to control the [NCO]/[OH] molar ratio). The impacts of the structure of flexible segments, the amount of each type of prepolymer, and the [NCO]/[OH] molar ratio on the chemical structure and selected properties of the TPUs were verified. By regulating the number of flexible segments of a given type, different selected properties of TPU materials were obtained. Thermal analysis confirmed the high thermal stability of the prepared materials and revealed that TPUs based on a higher amount of prepolymer synthesized from PO3G2700 have a tendency for cold crystallization. An increase in the amount of PO3G1000 at the flexible segments caused an increase in the tensile strength and decrease in the elongation at break. Melt flow index results demonstrated that the increase in the amount of prepolymer based on PO3G1000 resulted in TPUs favorable in terms of machining.


2013 ◽  
Vol 701 ◽  
pp. 202-206
Author(s):  
Ahmad Aroziki Abdul Aziz ◽  
Sakinah Mohd Alauddin ◽  
Ruzitah Mohd Salleh ◽  
Mohammed Iqbal Shueb

Effect of nanoMagnesium Hydroxide (MH) nloading amount to the mechanical and physical properties of Low Density Polyethylene (LDPE)/ Poly (ethylene-co vinyl acetate)(EVA) nanocomposite has been described and investigated in this paper. The tensile strength results show that increased amount of nanofiller will decrease and deteriorate the mechanical properties. The elongation at break decreased continuously with increasing loading of nanofiller. Generally, mechanical properties become poorer as loading amount increase. Melt Flow Index values for physical properties also provide same trend as mechanical properties results. Increase filler amount reduced MFI values whereby increased resistance to the flow.


2020 ◽  
Vol 10 ◽  
pp. 48-55
Author(s):  
H. V. Allakhverdiyeva ◽  
◽  
N. T. Kakhramanov ◽  
I. I. Ismayilov ◽  
◽  
...  

The paper presents the results of a study of the effect of aluminum content on the physic-mechanical properties of composites based on high density polyethylene and low density polyethylene. The properties of metal-filled composites, such as ultimate tensile stress, elongation at break, elastic module, melt flow rate, and heat resistance, were studied. According to the data obtained, the loading of aluminum into the composition of low density polyethylene contributes to a monotonic increase in the ultimate tensile stress and the elastic module. When aluminum is loading into the composition of high density polyethylene, on the contrary, a natural decrease in the ultimate tensile stress and elongation at break of the composites is observed. It is shown that when using a compatibilizer, which is polyethylene modified with maleic anhydride, a significant increase in the ultimate tensile stress of high-density polyethylene composites is observed. A schematic representation of the structure of composites with an interpretation of the probable mechanism of hardening of the material in the presence of a compatibilizer is given. It is shown that the crystallinity of the initial polyethylene has a significant effect on the hardening effect of composites. Electron microscopic micrographs of the structure of a filled composite without and with compatibilizer are given. A comparative assessment shows that in the presence of a compatibilizer, aluminum particles are in the bulk of the polymer matrix, i.e. are not in an isolated state. It is assumed that HDPE macrochains free of maleic anhydride (MA) are involved in the formation of crystalline formations, and small sections of macrosegments containing polar groups of MA are concentrated mainly in amorphous regions and in defects in crystalline structures in the form of passage chains. The concentration of PEMA macrosegments containing MA in the narrow amorphous space of HDPE favorably affects the increase in the adhesive forces of interaction on the surface of aluminum particles, which affects the preservation of the ultimate tensile stress at a relatively high level over a wide range of aluminum concentrations.


Author(s):  
Zulaisyah Laja Besar ◽  
Suffiyana Akhbar

The aim of this study is to investigate the influence of hydroxyapatite’s (HA) particle size, shape, and variation of HA weight percentage on the rheological behaviour of polycaprolactone/hydroxyapatite (PCL/HA) composite. The composite was produced by melt blending process using a single screw extruder assisted with an ultrasonic wave with varied HA weight content (0 wt.%, 10 wt.%, 20 wt.%, 30 wt.% and 40 wt.%). Two types of HA were used, which are needle shape (HAN) and irregular shape (HAS). The rheological behaviour of the PCL/HA composite was investigated through the melt flow index (MFI) test at a varied temperature of 100, 110, and 120 °C. The result indicated that an increase of HA content decreases the MFI values of the PCL/HA composite. At similar content of HA, PCL/HAN composite has higher activation energy with lower MFI values compared to PCL/HAS composite. In conclusion, this study concluded that the particle size, shape, and weight percentage of HA significantly affect the rheological behaviour of PCL/HA composites.


Author(s):  
Guoming Chen ◽  
Haihong Ma ◽  
Zhengfa Zhou ◽  
Fengmei Ren ◽  
Weibing Xu

Abstract The purpose of this study is to improve the properties of the feedstocks and shape retention of debinded parts by the reaction between 17-4PH stainless steel powders. Carboxyl-terminated hyperbranched polyester (CTHP) and epoxy-terminated hyperbranched polyester (ETHP) were used to treat the powders, and termed as CTHP-m and ETHP-m with carboxyl and epoxy group, respectively. Comparing with pristine, CTHP-m and ETHP-m, feedstock prepared from equal amount of CTHP-m and ETHP-m (CTHP-m/ETHP-m) possessed more excellent properties. The experimental results showed that the critical solids loading, flexural modulus, density and melt flow index of CTHP-m/ETHP-m feedstock were 63.8 vol.%, 2800 Mpa, 5.06 g/cm3 and 62 g/10min, respectively, which were obviously higher than that of others. Also, the shape retention of CTHP-m/ETHP-m debinded parts was the best of all the samples. The improved properties of CTHP-m/ETHP-m feedstock were attributed to the powder interaction between CTHP-m and ETHP-m formed by the chemical reaction between epoxy and carboxyl group.


2005 ◽  
Vol 21 (3) ◽  
pp. 219-230 ◽  
Author(s):  
Arup Choudhury ◽  
Mandira Mukherjee ◽  
Basudam Adhikari

The present investigation deals with the viability of the use of recycled milk pouch material, which is a 50:50 mixture of LDPE and LLDPE, and the scope for improvement of its properties by combining it with virgin LDPE-LLDPE (50/50). Melt flow index (MFI), rheological properties, thermal and mechanical properties of the pure materials and their formulated blends containing recycled milk pouches were studied. The properties of the recycled materials were not as satisfactory as those of the corresponding virgin materials. But a significant improvement in viscosity, crystallinity, tensile strength and elongation at break of the recycled LDPE-LLDPE material was achieved by blending it with the corresponding virgin LDPE-LLDPE blend.


2019 ◽  
Vol 816 ◽  
pp. 48-54
Author(s):  
Azamat L. Slonov ◽  
Ismel V. Musov ◽  
Azamat Zhansitov ◽  
D.M. Khakulova ◽  
Elena V. Rzhevskaya ◽  
...  

The effect of glass (GF) and carbon (CF) fibers of various linear sizes (0.2 and 3 mm) and concentrations on the properties of polyetherimide (PEI) has been studied. It is shown that the introduction of fibrous fillers leads to a decrease in the melt flow index, and to a greater extent in the case of fibers with a length of 3 mm. Also, it was found that both GF and CF lead to a decrease in toughness and an increase in the elastic-strength properties with a slight advantage of composites containing fibers of a length of 3 mm. In this case, GF composites have significantly higher properties. The study of heat resistance shows a slight decrease for composites with CF and the absence of influence of the filler for composites with HC, regardless of the size of the fibers.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 71
Author(s):  
Emilia Garofalo ◽  
Luciano Di Maio ◽  
Paola Scarfato ◽  
Arianna Pietrosanto ◽  
Antonio Protopapa ◽  
...  

This study focuses on the upgrading strategies to make Fil-s (acronym for film-small), a polyolefin-based material coming from the mechanical recycling of post-consumer flexible packaging, fit for re-use in the piping sector. The effects of washing treatments (at cold and hot conditions) and the addition of an experimental compatibilizer on the chemical-physical properties of Fil-s were first assessed. The measurements of some key properties (density, melt flow index, flexural modulus, yield strength), for both Fil-s as such and the different developed Fil-s based systems, was also conducted in order to evaluate the suitability of this complex and challenging waste stream to replace virgin PE-based pipe and fitting products, in compliance to ASTM D3350 standard. The outcomes of the present work contributed to define a code, for each Fil-s system investigated, useful for identifying the level of their performance in piping applications. All the recyclates were extruded as pipes by using a pilot scale plant, but the process resulted more stable and continuous with the compatibilized Fil-s, as it was deducible from its flow properties. Moreover, the best mechanical performances were exhibited by the hot-washed Fil-s pipes, with an increase in pipe stiffness equal to 65% respect to the unwashed sample.


Sign in / Sign up

Export Citation Format

Share Document