scholarly journals In vitro Anti-Inflammation and Selective Cytotoxicity of Vero and HepG2 Cells by Phenolic Extract From Roots of Hermannia Geniculata Eckl and Zehl

2020 ◽  
pp. 61-66
Author(s):  
Adeniran Lateef Ariyo ◽  
Ashafa Anofi Omotayo Tom

Anti-inflammatory and in vitro cytotoxic effect of phenols of Hermannia geniculata (PoHG) on Vero and HepG2 cells was carried out using Soybean lipoxygenase and MTT assays. PoHG extract exhibited a commendable inhibition of 5-lipoxygenase enzyme with IC50 value of (150 ± 0.03) µg/mL which is similar to the IC50: (110± 0.01) µg/mL of the standard (indomethacin). However, the extract was non-toxic to Vero cells with LC50 value >1.00 mg/mL but highly toxic to HepG2 cells (LC50: 0.05 mg/mL). A decrease viability of HepG2 cells was observed with increase in the concentration of the extract. There was less than 5% viable HepG2 cells at PoHG concentration of 750 µg/mL. The selectivity index of (20.00 and 33.33) was recorded for PoHG extract and doxorubicin respectively. The anti-inflammatory activities of PoHG suggested that the phenols extract may be useful in the management of inflammatory diseases like artheriosclerosis, diabetes mellitus, rheumatoid arthritis and asthma. It is also safe for use while its antiproliferative activities can be exploited in search for anticancer agents.

Author(s):  
Manu Jose ◽  
Stephin Baby ◽  
Dona Mathew ◽  
Naurin Muhammed ◽  
Jayalakshmi P M

The demand for herbal medicines in many pharmaceutical sectors is growing at a drastic rate due to their improved pharmacological actions, minimal side effects and cost-effectiveness. Anti-inflammatory phytochemicals are found to be efficacious against the treatment of inflammatory diseases like rheumatoid arthritis, glomerulonephritis, hepatitis, inflammatory bowel disease, etc. Anti-diabetic phytochemicals are found to treat the increasing incidence of diabetes prevalent globally. This work aims to perform the phytochemical screening and to evaluate the antidiabetic and anti-inflammatory activity of crude extract of Apama siliquosa Lamk. The method employed for obtaining the active principles includes soxhlation technique with methanol as solvent. The anti-inflammatory property was studied in vitro using inhibition of albumin denaturation technique as well as heat-induced hemolysis and IC50 value was found to be 39.5μg/ml and 36.30μg/ml respectively. The anti-diabetic activity was estimated using the alpha-amylase inhibition assay and Glucose diffusion inhibitory study. The IC50 value for alpha-amylase inhibition assay was found to be 15.75μg/ml. It also shows a strong inhibition of glucose across the dialysis membrane.


2020 ◽  
Vol 11 (1) ◽  
pp. 657-662
Author(s):  
Vasanth M P ◽  
Purushotham KG ◽  
Sathish M ◽  
Vimal Raj D ◽  
Venkatesh M

The G.glabra is otherwise called liquorice is a medicinal plant is used for various diseases like cold, cough, hypokalemia and muscle weakness, etc. The liquorice family belongs to the Fabaceae family of the G.glabra. Hence this study tells about the anti-inflammatory and antioxidants.  The quantitative study of phytochemical analysis, antioxidant and Anti-inflammatory, cytotoxicity assay using a response from the root extract of G.glabra  The results are showed above preliminary activity phytochemicals were present Alkaloids, Flavonoids, Coumarin, Saponins, Terpenoids, Steroids, Cardiac Glycosides. The antioxidant activity of aqueous extract of G. glabra were evaluated with the 2,2-diphenyl-1-picryl hydrazyl (DPPH), nitric oxide radical (NO), superoxide radical (SO), hydrogen peroxide radical (H2O2), and hydroxyl radical (HO) scavenging activity. This study shows about the activity of Glycyrrhiza glabra herbal medicinal plant aqueous extract using antioxidant assays, Anti-inflammatory assays.  The in vitro MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide Cytotoxicity assay were studied GG(G.glabra)  extract using the macrophages  Raw 246.7 Cell line. The cell line assay were studied in two different activity. One is anti-inflammation studies, and another is cytotoxicty of GG aqueous extract. The anti-inflammation IC50 value is 143.65, and GG extract dry sample were against the IC50 value is 326.27. From above, the results were a potential activity of GG extract R-value 0f 0.991.


2020 ◽  
Vol 7 (1) ◽  
pp. 1-8
Author(s):  
Sae Asayama ◽  
Ayaka Iwasaki ◽  
Shunya Sahara ◽  
Koichi Nakaoji ◽  
Masamitsu Ichihashi ◽  
...  

Background: Atopic Dermatitis (AD) is a chronic inflammatory skin disease that causes functional disruption of the skin barrier. We previously found that ethanol Extracts of Mallotus Philippinensis Bark (EMPB) promoted migration of mesenchymal stem cells and improved wound healing probably through anti-inflammatory action. However, direct evidence of the anti-inflammatory effect of EMPB and the underlying mechanisms of this action remain unknown. In the present study, we evaluated whether EMPB has an effective action on anti-inflammation using an in vitro and in vivo model. We found that topical application of EMPB improved house dust miteinduced AD-like skin inflammation in NC/Nga mice. In addition, EMPB significantly inhibited various kinds of inflammatory mediators such as interleukin-1ß, inducible nitric oxide synthases, and nuclear factorkappa B in lipopolysaccharide-stimulated macrophage cells. Moreover, EMPB exhibited marked radical scavenging ability. Taken together, these results suggest that EMPB may be useful in the treatment of skin inflammatory diseases such as AD. Keywords: Mallotus Philippinensis Bark; Anti-Inflammation; Atopic Dermatitis; Macrophages


Author(s):  
Reza Afrisham ◽  
Sahar Sadegh-Nejadi ◽  
Reza Meshkani ◽  
Solaleh Emamgholipour ◽  
Molood Bagherieh ◽  
...  

Introduction: Obesity is a disorder with low-grade chronic inflammation that plays a key role in the hepatic inflammation and steatosis. Moreover, there are studies to support the role of exosomes in the cellular communications, the regulation of metabolic homeostasis and immunomodulatory activity. Accordingly, we aimed to evaluate the influence of plasma circulating exosomes derived from females with normal-weight and obesity on the secretion of inflammatory cytokines in human liver cells. Methods: Plasma circulating exosomes were isolated from four normal (N-Exo) and four obese (O-Exo) women. The exosomes were characterized and approved for CD63 expression (common exosomal protein marker) and morphology/size using the western blot and TEM methods, respectively. The exosomes were used for stimulation of HepG2 cells in vitro. After 24 h incubation, the protein levels of TNF-α,IL-6, and IL-1β were measured in the culture supernatant of HepG2 cells using the ELISA kit. Results: The protein levels of IL-6 and TNF-α in the cells treated with O-Exo and N-Exo reduced significantly in comparison with control group (P=0.039 and P<0.001 respectively), while significance differences were not found between normal and obese groups (P=0.808, and P=0.978 respectively). However, no significant differences were found between three groups in term of IL-1β levels (P=0.069). Based on the correlation analysis, the protein levels of IL-6 were positively correlated with TNF-α (r 0.978, P<0.001). Conclusion: These findings suggest that plasma circulating exosomes have probably anti-inflammatory properties independently from body mass index and may decrease the secretion of inflammatory cytokines in liver. However, further investigations in vitro and in vivo are needed to address the anti-inflammatory function of N-Exo and O-Exo in human liver cells and/or other cells.


Author(s):  
Mingzhu Luan ◽  
Huiyun Wang ◽  
Jiazhen Wang ◽  
Xiaofan Zhang ◽  
Fenglan Zhao ◽  
...  

: In vivo and in vitro studies reveal that ursolic acid (UA) is able to counteract endogenous and exogenous inflammatory stimuli, and has favorable anti-inflammatory effects. The anti-inflammatory mechanisms mainly include decreasing the release of histamine in mast cells, suppressing the activities of lipoxygenase, cyclooxygenase and phospholipase, and reducing the production of nitric oxide and reactive oxygen species, blocking the activation of signal pathway, down-regulating the expression of inflammatory factors, and inhibiting the activities of elastase and complement. These mechanisms can open up new avenues for the scientific community to develop or improve novel therapeutic approaches to tackle inflammatory diseases such as arthritis, atherosclerosis, neuroinflammation, liver diseases, kidney diseases, diabetes, dermatitis, bowel diseases, cancer. The anti-inflammatory activity, the anti-inflammatory mechanism of ursolic acid and its therapeutic applications are reviewed in this paper.


2019 ◽  
Author(s):  
Murugesh Kandasamy ◽  
Kit-Kay Mak ◽  
Thangaraj Devadoss ◽  
Punniyakoti Veeraveedu Thanikachalam ◽  
Raghavendra Sakirolla ◽  
...  

Abstract The transcription factor Nuclear factor erythroid-2-related factor 2 (NRF2) and its principal repressive regulator, the E3 ligase adaptor Kelch-like ECH-associated protein 1 (KEAP1), are critical in the regulation of inflammation, as well as maintenance of homeostasis. Thus, NRF2 activation provides cytoprotection against numerous inflammatory disorders. N-nicotinoylquinoxaline-2-carbohdyrazide (NQC) was designed by combining the important pharmacophoric features of bioactive compounds reported in the literature. NQC was synthesised and characterised using spectroscopic techniques. The compound was tested for its anti-inflammatory effect using LPSEc induced inflammation in mouse macrophages (RAW 264.7 cells). The effect of NQC on inflammatory cytokines was measured using ELISA. The Nrf2 activity of the compound NQC was determined using ‘Keap1:Nrf2 Inhibitor Screening Assay Kit’. To obtain the insights on NQC’s activity on Nrf2, molecular docking studies were performed using Schrodinger suite. The metabolic stability of NQC was determined using mouse, rat and human microsomes. NQC was found to be non-toxic until the dose of 50 µM on RAW 264.7 cells. The NQC showed potent anti-inflammatory effect in an in vitro model of Lipopolysaccharide (LPS) stimulated murine macrophages (RAW 264.7 cells) with an IC50 value 26.13 ± 1.17 µM. The NQC dose-dependently down regulated the pro-inflammatory cytokines (Interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α) and inflammatory mediator, prostaglandin E2 (PGE2) with IC50 values 13.27 ± 2.37, 10.13 ± 0.58, 14.41 ± 1.83 and 15.23 ± 0.91 µM respectively. Molecular docking studies confirmed the favourable binding of NQC at Kelch domain of Keap-1. It disrupts the Nrf2 interaction with kelch domain of keap 1 and its IC50 value was 4.21 ± 0.89 µM. The metabolic stability studies of NQC in human, rat and mouse liver microsomes revealed that it is quite stable with half-life values; 59.78 ± 6.73, 52.93 ± 7.81, 28.43 ± 8.13 minutes; microsomal intrinsic clearance values; 22.1 ± 4.31, 26.0 ± 5.17 and 47.13 ± 6.34 µL/min/mg protein; respectively. So, rat has comparable metabolic profile with human, thus, rat could be used for predicting the pharmacokinetics and metabolism of NQC in human. NQC is a new class of NRF2 activator with potent in vitro anti-inflammatory activity and good metabolic stability.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 437
Author(s):  
Shu-Qin Qin ◽  
Lian-Chun Li ◽  
Jing-Ru Song ◽  
Hai-Yun Li ◽  
Dian-Peng Li

A series of novel structurally simple analogues based on nitidine was designed and synthesized in search of potent anticancer agents. The antitumor activity against human cancer cell lines (HepG2, A549, NCI-H460, and CNE1) was performed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay in vitro. The results showed that some of them had good anticancer activities, especially derivatives with a [(dimethylamino)ethyl]amino side chain in the C-6 position. Planar conjugated compounds 15a, 15b, and 15c, with IC50 values of 1.20 μM, 1.87 μM, and 1.19 μM against CNE1 cells, respectively, were more active than nitidine chloride. Compound 15b and compound 15c with IC50 values of 1.19 μM and 1.37 μM against HepG2 cells and A549 cells demonstrated superior activities to nitidine. Besides, compound 5e which had a phenanthridinone core displayed extraordinary cytotoxicity against all test cells, particularly against CNE1 cells with the IC50 value of 1.13 μM.


Cells ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 284 ◽  
Author(s):  
Benjamin J. Swartzwelter ◽  
Francesco Barbero ◽  
Alessandro Verde ◽  
Maria Mangini ◽  
Marinella Pirozzi ◽  
...  

Innate immune memory is characterized by a modulation in the magnitude with which innate immune cells such as monocytes and macrophages respond to potential dangers, subsequent to previous exposure to the same or unrelated agents. In this study, we have examined the capacity of gold nanoparticles (AuNP), which are already in use for therapeutic and diagnostic purposes, to modulate the innate memory induced by bacterial agents. The induction of innate memory was achieved in vitro by exposing human primary monocytes to bacterial agents (lipopolysaccharide -LPS-, or live Bacille Calmette-Guérin -BCG) in the absence or presence of AuNP. After the primary activation, cells were allowed to return to a resting condition, and eventually re-challenged with LPS. The induction of memory was assessed by comparing the response to the LPS challenge of unprimed cells with that of cells primed with bacterial agents and AuNP. The response to LPS was measured as the production of inflammatory (TNFα, IL-6) and anti-inflammatory cytokines (IL-10, IL-1Ra). While ineffective in directly inducing innate memory per se, and unable to influence LPS-induced tolerance memory, AuNP significantly affected the memory response of BCG-primed cells, by inhibiting the secondary response in terms of both inflammatory and anti-inflammatory factor production. The reprogramming of BCG-induced memory towards a tolerance type of reactivity may open promising perspectives for the use of AuNP in immunomodulatory approaches to autoimmune and chronic inflammatory diseases.


2019 ◽  
Vol 2019 ◽  
pp. 1-17 ◽  
Author(s):  
Stephanie Flore Djuichou Nguemnang ◽  
Eric Gonzal Tsafack ◽  
Marius Mbiantcha ◽  
Ateufack Gilbert ◽  
Albert Donatien Atsamo ◽  
...  

Dissotis thollonii Cogn. (Melastomataceae) is a tropical plant widely used in traditional Cameroonian medicine to relieve and treat many pathologies. It is widespread in the western region where it is used to treat typhoid fever, gastrointestinal disorders, and inflammatory diseases. The purpose of this study is to scientifically demonstrate the anti-inflammatory and antiarthritic properties of the aqueous and ethanolic extracts of the leaves of Dissotis thollonii. The anti-inflammatory properties were evaluated in vitro by inhibition tests for cyclooxygenase, 5-lipoxygenase, protein denaturation, extracellular ROS production, and cell proliferation; while antiarthritic properties were evaluated in vivo in rats using the zymosan A-induced monoarthritis test and the CFA-induced polyarthritis model. This study shows that aqueous and ethanolic extracts at a concentration of 1000 μg/ml inhibit the activity of cyclooxygenase (47.07% and 63.36%) and 5-lipoxygenase (66.79% and 77.7%) and protein denaturation (42.51% and 44.44%). Similarly, both extracts inhibited extracellular ROS production (IC50 = 5.74 μg/ml and 2.96 μg/ml for polymorphonuclear leukocytes, 7.47 μg/ml and 3.28 μg ml for peritoneal macrophages of mouse) and cell proliferation (IC50 = 16.89 μg/ml and 3.29 μg/ml). At a dose of 500 mg/kg, aqueous and ethanolic extracts significantly reduce edema induced by zymosan A (69.30% and 81.80%) and CFA (71.85% and 79.03%). At the same dose, both extracts decreased sensitivity to mechanical hyperalgesia with 69.00% and 70.35% inhibition, respectively. Systemic and histological analyzes show that both extracts maintain the studied parameters very close to normal and greatly restored the normal architecture of the joint in animals. Dissotis thollonii would therefore be a very promising source for the treatment of inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document