scholarly journals Biological relevance unites, semantics divides: a comment on Ruther et al (2021)

2021 ◽  
Author(s):  
Bertanne Visser ◽  
Cécile Le Lann ◽  
Caroline M. Nieberding ◽  
Mark Lammers ◽  
Daniel A. Hahn ◽  
...  

Ruther et al (2021) evaluated fatty acid synthesis in several parasitic wasp species to test if the general finding that lipogenesis in parasitoids is lacking is upheld (Visser et al 2010 PNAS). As proposed by Visser & Ellers (2008), parasitoids can readily assimilate the triglyceride stores produced by their host. When large triglyceride stores are carried over from larval feeding into adulthood (i.e., up to 30 to 40% of the parasitoid’s dry body weight; Visser et al., 2018, 2021), de novo lipid synthesis from adult feeding is either unnecessary or too costly to maintain, leading to trait loss (Ellers et al., 2012). To test the hypothesis that many parasitoids do not synthesize substantial quantities of fat stores as adults, a previous study used feeding experiments on a wide taxonomic range of insects, including parasitoid wasps, parasitoid flies, a parasitoid beetle, and 65 non-parasitoid species (Visser et al., 2010 and references therein). What is striking is that when compared to non-parasitoid insects, 24 out of 29 evolutionarily distinct parasitoid lineages (Coleoptera, Diptera and Hymenoptera; Visser et al., 2010) did not accumulate significant lipid quantities in adulthood even when fed surplus carbohydrates. When little to no lipids are synthesized de novo by adult parasitoid wasps, this can lead to significant constraints on energy allocation toward key adult functions, such as maintenance, dispersal, and reproduction (Jervis et al., 2008). To our minds, the most important question is ‘why don’t parasitoids accumulate substantial quantities of fat as adults like other insects do, and what does this mean for their life histories?’

1991 ◽  
Vol 58 (2) ◽  
pp. 123-127 ◽  
Author(s):  
Emmanuel A. Asante ◽  
William G. Hill ◽  
Grahame Bulfield

SummaryThe flux through the de novo fatty acid synthesis pathway was estimated in lines of mice which differed substantially in fat content following 26 generations of selection at 10 weeks of age. Previous estimates of lipogenic enzyme activities had indicated an increase in the capacity for lipogenesis in the Fat compared to the Lean line. Therefore the in vivo flux in lipogenesis was measured in both liver and gonadal fat pad (GFP) tissues of males at 5 and 10 weeks of age, using the rat of incorporation of 3H from 3H2O and 14C from acetate and citra te into total lipids. AT both ages and in both tissues the Fat line had a higher flux, about 20% increase in the liver and up to three-fold increase (range 1·2- to 3·4-fold) in the GFP. We conclude that direct selection for fatness in mice has resulted in metabolic changes in the ratio of de novo fatty acid synthesis, and that the changes are largely detectable before 10 weeks, the age of selection.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2600
Author(s):  
Matheus Pinto De Oliveira ◽  
Marc Liesa

Tumors remodel their metabolism to support anabolic processes needed for replication, as well as to survive nutrient scarcity and oxidative stress imposed by their changing environment. In most healthy tissues, the shift from anabolism to catabolism results in decreased glycolysis and elevated fatty acid oxidation (FAO). This change in the nutrient selected for oxidation is regulated by the glucose-fatty acid cycle, also known as the Randle cycle. Briefly, this cycle consists of a decrease in glycolysis caused by increased mitochondrial FAO in muscle as a result of elevated extracellular fatty acid availability. Closing the cycle, increased glycolysis in response to elevated extracellular glucose availability causes a decrease in mitochondrial FAO. This competition between glycolysis and FAO and its relationship with anabolism and catabolism is conserved in some cancers. Accordingly, decreasing glycolysis to lactate, even by diverting pyruvate to mitochondria, can stop proliferation. Moreover, colorectal cancer cells can effectively shift to FAO to survive both glucose restriction and increases in oxidative stress at the expense of decreasing anabolism. However, a subset of B-cell lymphomas and other cancers require a concurrent increase in mitochondrial FAO and glycolysis to support anabolism and proliferation, thus escaping the competing nature of the Randle cycle. How mitochondria are remodeled in these FAO-dependent lymphomas to preferably oxidize fat, while concurrently sustaining high glycolysis and increasing de novo fatty acid synthesis is unclear. Here, we review studies focusing on the role of mitochondrial FAO and mitochondrial-driven lipid synthesis in cancer proliferation and survival, specifically in colorectal cancer and lymphomas. We conclude that a specific metabolic liability of these FAO-dependent cancers could be a unique remodeling of mitochondrial function that licenses elevated FAO concurrent to high glycolysis and fatty acid synthesis. In addition, blocking this mitochondrial remodeling could selectively stop growth of tumors that shifted to mitochondrial FAO to survive oxidative stress and nutrient scarcity.


2019 ◽  
Vol 116 (37) ◽  
pp. 18691-18699 ◽  
Author(s):  
Marine Adlanmerini ◽  
Bryce J. Carpenter ◽  
Jarrett R. Remsberg ◽  
Yann Aubert ◽  
Lindsey C. Peed ◽  
...  

Ambient temperature influences the molecular clock and lipid metabolism, but the impact of chronic cold exposure on circadian lipid metabolism in thermogenic brown adipose tissue (BAT) has not been studied. Here we show that during chronic cold exposure (1 wk at 4 °C), genes controlling de novo lipogenesis (DNL) includingSrebp1, the master transcriptional regulator of DNL, acquired high-amplitude circadian rhythms in thermogenic BAT. These conditions activated mechanistic target of rapamycin 1 (mTORC1), an inducer ofSrebp1expression, and engaged circadian transcriptional repressors REV-ERBα and β as rhythmic regulators ofSrebp1in BAT. SREBP was required in BAT for the thermogenic response to norepinephrine, and depletion of SREBP prevented maintenance of body temperature both during circadian cycles as well as during fasting of chronically cold mice. By contrast, deletion of REV-ERBα and β in BAT allowed mice to maintain their body temperature in chronic cold. Thus, the environmental challenge of prolonged noncircadian exposure to cold temperature induces circadian induction of SREBP1 that drives fuel synthesis in BAT and is necessary to maintain circadian body temperature during chronic cold exposure. The requirement for BAT fatty acid synthesis has broad implications for adaptation to cold.


2018 ◽  
Author(s):  
Andrew A. Forbes ◽  
Robin K. Bagley ◽  
Marc A. Beer ◽  
Alaine C. Hippee ◽  
Heather A. Widmayer

AbstractBackgroundWe challenge the oft-repeated claim that the beetles (Coleoptera) are the most species-rich order of animals. Instead, we assert that another order of insects, the Hymenoptera, are more speciose, due in large part to the massively diverse but relatively poorly known parasitoid wasps. The idea that the beetles have more species than other orders is primarily based on their respective collection histories and the relative availability of taxonomic resources, which both disfavor parasitoid wasps. Though it is unreasonable to directly compare numbers of described species in each order, the ecology of parasitic wasps – specifically, their intimate interactions with their hosts – allows for estimation of relative richness. We present a simple logical model that shows how the specialization of many parasitic wasps on their hosts suggests few scenarios in which there would be more beetle species than parasitic wasp species. We couple this model with an accounting of what we call the “genus-specific parasitoid-host ratio” from four well-studied genera of insect hosts, a metric by which to generate extremely conservative estimates of the average number of parasitic wasp species attacking a given beetle or other insect host species. Synthesis of our model with data from real host systems suggests that the Hymenoptera may have 2.5 - 3.2× more species than the Coleoptera. While there are more described species of beetles than all other animals, the Hymenoptera are almost certainly the larger order.


1981 ◽  
Vol 240 (2) ◽  
pp. E101-E107 ◽  
Author(s):  
M. L. Kaplan ◽  
G. A. Leveille

Lipogenesis and insulin sensitivity are evaluated in adipose tissue, liver, and diaphragm of ob/ob and non-ob/ob mice. In ob/ob mice, hepatic fatty acid synthesis from [U-14C]glucose is elevated by 4 wk of age, and adipose tissue fatty acid synthesis increases at approximately 7 wk. Hepatic activities in ob/ob mice of glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 6-phosphogluconate dehydrogenase (EC 1.1.1.44), malate dehydrogenase (EC 1.1.1.40), and alpha-glycerophosphate dehydrogenase (EC 1.1.1.8) are dramatically increased by 7 wk of age. Diminished insulin-stimulated glycogen synthesis is first noted in the diaphragm of ob/ob mice at 7 wk of age. Insulin-stimulated glycogen synthesis in adipose tissue of ob/ob mice is impaired at 3 wk. At 7 wk, insulin-stimulated fatty acid synthesis in adipose tissue of ob/ob mice is markedly increased. Adipose tissue glyceride-glycerol synthesis continues to increase throughout development, whereas fatty acid synthesis decreases after 7 wk. The data suggest that alterations in lipid synthesis occur very early in the development of ob/ob mouse, prior to expression to overt obesity, at which time a major contribution to lipogenesis is made by the liver. The altered de novo lipogenesis does not precede the reported diminution in energy metabolism.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lisha Bao ◽  
Tong Xu ◽  
Xixuan Lu ◽  
Ping Huang ◽  
Zongfu Pan ◽  
...  

Metabolism differs significantly between tumor and normal cells. Metabolic reprogramming in cancer cells and metabolic interplay in the tumor microenvironment (TME) are important for tumor formation and progression. Tumor cells show changes in both catabolism and anabolism. Altered aerobic glycolysis, known as the Warburg effect, is a well-recognized characteristic of tumor cell energy metabolism. Compared with normal cells, tumor cells consume more glucose and glutamine. The enhanced anabolism in tumor cells includes de novo lipid synthesis as well as protein and nucleic acid synthesis. Although these forms of energy supply are uneconomical, they are required for the functioning of cancer cells, including those in thyroid cancer (TC). Increasing attention has recently focused on alterations of the TME. Understanding the metabolic changes governing the intricate relationship between TC cells and the TME may provide novel ideas for the treatment of TC.


2020 ◽  
Author(s):  
Arkadiusz Damian Liśkiewicz ◽  
Marta Przybyła ◽  
Anna Wojakowska ◽  
Łukasz Marczak ◽  
Katarzyna Bogus ◽  
...  

Abstract Physical activity impacts brain functions, but the direct mechanisms of this effect are not fully recognized or understood. Among multidimensional changes induced by physical activity, brain fatty acids (FA) appear to play an important role; however, the knowledge in this area is particularly scarce. Here we performed global metabolomics profiling of the hippocampus and the frontal cortex (FC) in a model of voluntary running in mice. Examined brain structures responded differentially to physical activity. Specifically, the markers of the tricarboxylic acid (TCA) cycle were downregulated in the FC, whereas glycolysis was enhanced in the hippocampus. Physical activity stimulated production of myristic, palmitic and stearic FA; i.e., the primary end products of de novo lipogenesis in the brain, which was accompanied by increased expression of hippocampal fatty acid synthase (FAS), suggesting stimulation of lipid synthesis. The changes in the brain fatty acid profile were associated with reduced anxiety level in the running mice. Overall, the study examines exercise-related metabolic changes in the brain and links them to behavioral outcomes.


2020 ◽  
Author(s):  
Arkadiusz Damian Liśkiewicz ◽  
Marta Przybyła ◽  
Anna Wojakowska ◽  
Łukasz Marczak ◽  
Katarzyna Bogus ◽  
...  

Abstract Physical activity impacts brain functions, but the direct mechanisms of this effect are not fully recognized or understood. Among multidimensional changes induced by physical activity, brain fatty acids (FA) appear to play an important role; however, the knowledge in this area is particularly scarce. Here we performed global metabolomics profiling of the hippocampus and the frontal cortex (FC) in a model of voluntary running in mice. Examined brain structures responded differentially to physical activity. Specifically, the markers of the tricarboxylic acid (TCA) cycle were downregulated in the FC, whereas glycolysis was enhanced in the hippocampus. Physical activity stimulated production of myristic, palmitic and stearic FA; i.e., the primary end products of de novo lipogenesis in the brain, which was accompanied by increased expression of hippocampal fatty acid synthase (FAS), suggesting stimulation of lipid synthesis. The changes in the brain fatty acid profile were associated with reduced anxiety level in the running mice. Overall, the study examines exercise-related metabolic changes in the brain and links them to behavioral outcomes.


1998 ◽  
Vol 334 (1) ◽  
pp. 113-119 ◽  
Author(s):  
Nigel J. PEARCE ◽  
John W. YATES ◽  
Theo A. BERKHOUT ◽  
Brian JACKSON ◽  
David TEW ◽  
...  

ATP citrate (pro-S)-lyase (EC 4.1.3.8), a cytosolic enzyme that generates acetyl-CoA for cholesterol and fatty acid synthesis de novo, is a potential target for hypolipidaemic intervention. Here we describe the biological effects of the inhibition of ATP citrate-lyase on lipid metabolism in Hep G2 cells, and plasma lipids in rats and dogs, by using SB-204990, the cell-penetrant γ-lactone prodrug of the potent ATP citrate-lyase inhibitor SB-201076 (Ki = 1 µM). Consistent with an important role of ATP citrate-lyase in the supply of acetyl-CoA units for lipid synthesis de novo, SB-204990 inhibited cholesterol synthesis and fatty acid synthesis in Hep G2 cells (dose-related inhibition of up to 91% and 82% respectively) and rats (76% and 39% respectively). SB-204990, when administered orally to rats, was absorbed into the systemic circulation; pharmacologically relevant concentrations of SB-201076 were recovered in the liver. When administered in the diet (0.05–0.25%, w/w) for 1 week, SB-204990 caused a dose-related decrease in plasma cholesterol (by up to 46%) and triglyceride levels (by up to 80%) in rats. This hypolipidaemic effect could be explained, at least in part, by a decrease (up to 48%) in hepatic very-low-density lipoprotein (VLDL) production as measured by the accumulation of VLDL in plasma after injection of Triton WR-1339. SB-204990 (25 mg/kg per day) also decreased plasma cholesterol levels (by up to 23%) and triglyceride levels (by up to 38%) in the dog, preferentially decreasing low-density lipoprotein compared with high-density lipoprotein cholesterol levels. Overall these results are consistent with the concept that ATP citrate-lyase is an important enzyme in controlling substrate supply for lipid synthesis de novo and a potential enzyme target for hypolipidaemic intervention.


Marine Drugs ◽  
2019 ◽  
Vol 17 (9) ◽  
pp. 519 ◽  
Author(s):  
Liang ◽  
Iqbal ◽  
Wen ◽  
Tong ◽  
Liu

Phytoplankton are primary producers in the marine ecosystem, where phosphorus is often a limiting factor of their growth. Hence, they have evolved strategies to recycle phosphorus by replacing membrane phospholipids with phosphorus-free lipids. However, mechanisms for replacement of lipid classes remain poorly understood. To improve our understanding, we performed the lipidomic and transcriptomic profiling analyses of an oleaginous marine microalga Nannochloropsis sp. PJ12 in response to phosphorus depletion (PD) and replenishing. In this study, by using (liquid chromatography couple with tandem mass spectrometry) LC-MS/MS-based lipidomic analysis, we show that membrane phospholipid levels are significantly reduced upon PD, while phosphorus-free betaine lipid levels are increased. However, levels of phosphorus-free photosynthetic galactolipid and sulfolipid are not increased upon PD, consistent with the reduced photosynthetic activity. RNA-seq-based transcriptomic analysis indicates that enzymes involved in phospholipid recycling and phosphorus-free lipid synthesis are upregulated, supporting the lipidomic analysis. Furthermore, enzymes involved in FASII (type II fatty acid synthesis) elongation cycle upon PD are transcriptionally downregulated. EPA (eicosapentaenoic acid) level decrease upon PD is revealed by both GC-MS (gas chromatography coupled with mass spectrometry) and LC-MS/MS-based lipidomic analyses. PD-induced alteration is reversed after phosphorus replenishing. Taken together, our results suggest that the alteration of lipid classes upon environmental change of phosphorus is a result of remodeling rather than de novo synthesis in Nannochloropsis sp. PJ12.


Sign in / Sign up

Export Citation Format

Share Document