PROCESS FOR CHROMIUM (VI) REMOVAL FROM MECHANIZED TANNERY WASTEWATER USING ACTIVATED CARBON OBTAINED FROM TANNERY SOLID WASTES

2021 ◽  
Vol 5 (1) ◽  
pp. 364-371
Author(s):  
Yakubu Abdulkadir ◽  
K. A. Bichi ◽  
F. H. Garba ◽  
Y. C. Itopa ◽  
Y. U. Jibrin ◽  
...  

This study offers an integrated process for treatment and recycling of tannery waste, it has a dual purpose. First the activated carbon has been prepared from leather shaving and buffing dust by physical activation. Both the raw material (leather waste) and the prepared activated carbon were analyzed by DTG, Thermo Gravimetric Analysis TGA, and scanning electron microscope. The adsorption tests of methylene blue and iodine onto the raw material and the prepared adsorbent were carried out and it was found that the adsorption capacity of the activated carbon was enhanced by the physical activation. The Activated Carbon was then characterized by equation of Brunauer-Emmett-Teller surface area and Fourier transforms infrared spectroscopy (FTIR). The Brunauer-Emmett-Teller surface area was found to be 491.05 and 242.60 m2/g for activated carbons prepared from Leather Savings and Buffing Dust respectively and the functional groups on the adsorbent surface were mainly CN, NH, OH, CO and CS. Secondly, the performance of the prepared activated carbon was assessed by adsorption of chromium (VI) from a synthetic solution, and then the chromium (III) present in the tanning effluent. The results revealed a decrease of chromium by 76% and 73% for the activated carbons prepared from Leather Savings and Buffing Dust, respectively

2010 ◽  
Vol 6 (2) ◽  
pp. 1017-1023
Author(s):  
N.R.A. El-Mouhty ◽  
H. M. H. Gad ◽  
A. Y. El-Naggar

This study investigated the applicability of chemically (phosphoric acid) activated bagasse pith and date pits in the adsorption of water pollutants. The textural properties including porous parameters, monolayer equivalent surface area, total pore volumes, average pore radius, Methylene blue number and other physic-chemical characterization were investigated. The activated carbons were analyzed for moisture content, ash content. Ultimate analysis was done by using CHNS analyzer (Cairo University, Micro-analytical Center). To investigate the effect of phosphoric acid on the raw material, thermo gravimetric analysis (TGA) and differential thermo gravimetric (DTG) recordings were determined. The adsorption of heavy metals as pollutants, including Co, Sr, Cu, Cs, Pb, Cd, Ni, Fe, Zn, was studied in a batch experiments. Comparison of date pits activated carbon with commercial activated carbon was done, and the results indicated that using of prepared activated carbon for removal of Co, Sr, Cu, Cs, Pb, Cd, Ni,  Fe, Zn was  more effective than commercial activated carbon.


2014 ◽  
Vol 14 (1) ◽  
pp. 82-98
Author(s):  
Andy Mizwar

Limbah rotan dari industri kerajinan dan mebel berpotensi untuk dijadikan sebagai bahan baku pembuatan karbon aktif karena memiliki kandungan holoselulosa dan kadar karbon yang tinggi. Penelitian ini bertujuan untuk menganalisis efektifitas dari aktivasi kimia menggunakan larutan natrium klorida (NaCl) yang dilanjutkan dengan aktivasi fisik dalam pembuatan karbon aktif berbahan dasar  limbah serutan rotan. Pembuatan karbon aktif diawali dengan proses karbonisasi pada suhu 250°C selama 1 jam. Selanjutnya aktivasi kimia menggunakan larutan NaCl dengan variasi konsentrasi 10%, 15% dan 20% serta waktu perendaman selama 10, 15 dan 20 jam. Aktivasi fisik dilakukan dengan pembakaran pada suhu 700°C selama 30 menit. Analisis karakteristik fisik-kimia karbon aktif mengacu pada SNI 06-3730-95, meliputi kadar air, fixed carbon, dan iodine number, sedangkan perhitungan luas permukaan spesifik karbon aktif dilakukan dengan Metode Sears. Hasil penelitian ini menunjukkan bahwa kondisi optimum aktivasi kimia terjadi pada konsentrasi NaCl 10% dan lama perendaman 10 jam dengan hasil analisis kadar air 2.90%, fixed carbon 72.70%, iodine number 994.59 mg/g dan luas permukaan 1587.67 m²/g. Peningkatan fixed carbon, iodine number dan luas permukaan karbon aktif berbanding terbalik dengan peningkatan konsentrasi NaCl dan lama waktu perendaman, sedangkan peningkatan kadar air pada karbon aktif berlaku sebaliknya. Rattan waste from handicraft and furniture industry could potentially be used as raw material of activated carbon due to high content of holoselulosa and carbon. This paper investigates the effectiveness of chemical activation using sodium chloride (NaCl) followed by physical activation in the making of activated carbon-based on rattan shavings waste. Preparation of the activated carbon began with the carbonization process at 250°C for 1 hour. Furthermore chemical activation using a variation of NaCl concentrations 10%, 15% and 20% as well as the time of immersion 10, 15 and 20 hours. Physical activation was done by burning at 700°C for 30 minutes. Analysis of the physical and chemical characteristics of the activated carbon was referred to the SNI 06-3730-95, including of moisture content, fixed carbon and iodine number, while the calculation of the specific surface area was done by the Sears’s method. The results of this study showed that the optimum conditions of chemical activation occurred in impregnation by NaCl 10% for 10 hours. The water content, fixed carbon, iodine number and surface area of activated carbon was 2.90%, 72.70%, 994.59 mg/g and 1587.67 m²/g  respectively. The increase values of fixed carbon, iodine number, and surface area was inversely proportional to the increase of NaCl concentration and the length of impregnation time, while the increase of water content applied vice versa.


CERNE ◽  
2017 ◽  
Vol 23 (1) ◽  
pp. 123-132 ◽  
Author(s):  
Gregório Mateus Santana ◽  
Roberto Carlos Costa Lelis ◽  
Emerson Freitas Jaguaribe ◽  
Rayssa de Medeiros Morais ◽  
Juarez Benigno Paes ◽  
...  

ABSTRACT Considering the water scarcity problems facing many countries, the need for water reuse can make activated carbon (AC) an essential product for modern society. In this context, to contribute with better activated carbons that could be used to serve in water treatment, this article discusses these materials production, using bamboo as raw material, and analyses their application effectiveness. The bamboo was collected, transformed into activated carbon, by simultaneous chemical and physical activations, and named H3PO4/H2OAC. The obtained material was characterized by its yield, apparent density, ash content, thermogravimetric analysis, surface area, methylene blue and iodine indexes, pH and point of zero charge analysis, scanning electron microscopy and Boehm titration method. The AC was used as adsorbent for removing the metribuzin, 2,4-dichlorophenoxyacetic acid and furadan pesticides. The H3PO4/H2OAC had a surface area of 1196.30 m².g-1 and the obtained adsorption capacity was elevated for furadan (868.98 mg.g-1), metribuzin (756.47 mg.g-1) and 2,4-dichlorophenoxyacetic acid (274.70 mg.g-1).


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2047 ◽  
Author(s):  
Katarzyna Januszewicz ◽  
Paweł Kazimierski ◽  
Maciej Klein ◽  
Dariusz Kardaś ◽  
Justyna Łuczak

Pyrolysis of straw pellets and wood strips was performed in a fixed bed reactor. The chars, solid products of thermal degradation, were used as potential materials for activated carbon production. Chemical and physical activation processes were used to compare properties of the products. The chemical activation agent KOH was chosen and the physical activation was conducted with steam and carbon dioxide as oxidising gases. The effect of the activation process on the surface area, pore volume, structure and composition of the biochar was examined. The samples with the highest surface area (1349.6 and 1194.4 m2/g for straw and wood activated carbons, respectively) were obtained when the chemical activation with KOH solution was applied. The sample with the highest surface area was used as an adsorbent for model wastewater contamination removal.


2016 ◽  
Vol 74 (1) ◽  
pp. 266-275 ◽  
Author(s):  
Jie Liu ◽  
Lingxia Hao ◽  
Wenzhen Qian ◽  
Yu-Feng He ◽  
Rong-Min Wang

Using simple one-step carbonization-activation, the residues of paulownia flowers are employed as a precursor to prepare hierarchically porous activated carbon. After investigating the optimum conditions, the obtained paulownia flowers based activated carbon (PFAC) is characterized by Fourier transform infrared spectroscopy, scanning electron microscope, transmission electron microscope, Brunauer–Emmett–Teller specific surface area analysis (SBET), thermo gravimetric analysis, and X-ray photoelectron spectroscopy. The PFAC owns a high specific surface area of 1,053 m2/g as well as a hierarchically porous structure with a combination of micro-, meso- and macropores. The pore-forming mechanism is discussed according to results of characterization. Using methylene blue as model dye, the adsorption behaviors of PFAC were investigated. We found that the dye could be rapidly adsorbed by hierarchically porous PFAC, and the adsorption capacity of PFAC reached 300 mg/g.


2020 ◽  
Vol 15 (2) ◽  
pp. 79-89
Author(s):  
Sriatun Sriatun ◽  
Shabrina Herawati ◽  
Icha Aisyah

The starting material for activated carbon was biomass from teak woodcutting, which consists of 47.5% cellulose, 14.4% hemicellulose, and 29.9% lignin. The surface area and iodine number of activated carbons are the factors determining the adsorption ability. This study aims to determine the effect of the activator type on activated carbon characters and test the absorption ability for waste cooking oil. The synthesis stages include carbonization, chemical activation, and then physics activation. The activation process consists of two steps. Firstly, the chemical activation via adding H2SO4, and H3PO4 at room temperature for 24 hours, the second, physical activation by heating at various temperatures of 300, 400, and 500 °C for two hours. The characterizations of activated carbon include water content, ash content, iodine number, functional groups, and surface area. Furthermore, the activated carbon was used as an adsorbent for waste cooking oil for 60 minutes at 100 °C with a stirring of 500 rpm. The results were analyzed using UV-Vis spectrophotometry at a maximum wavelength of 403 nm. The iodine numbers of activated carbon ranged 481.1-1211.4 mg/g and 494.8-1204 mg/g for H3PO4 and H2SO4, respectively.Activated carbon with H3PO4 of 15% and an activation temperature of 400 °C has the highest surface area of 445.30 m2/g.  The H2SO4 dan H3PO4 activators can be used to improve the quality of activated carbon in absorbing dyes in waste cooking oil, where the optimum concentration is 10-15% (v/v). The H3PO4 activator tends to produce a higher bleaching percentage than H2SO4. 


2018 ◽  
Vol 67 ◽  
pp. 02018 ◽  
Author(s):  
Yuliusman ◽  
Nasruddin ◽  
H I Naf’an ◽  
J Sinto ◽  
Y W Nugroho

Activated carbon used as natural gas storage in adsorbed natural gas technology due to physical adsorption properties. Pineapple crown was used as raw material for activated carbon by reason of high lignocellulose content. The purpose of this study is to produce high surface area of activated carbon with high carbon composition (up to 80% weight). Activated carbon were prepared through chemical activation using KOH with various weight ratio and physical activation using N2 with 150 ml/min flowrate. Carbonization of pineapple crown is done at 350°C followed by chemical activation with KOH activator and physical activation. The result of iod number indicate the 1:1 weight KOH ratio gave the highest iod number 1337 mg/mg and 1190.799 m2/g surface area achieved by chemical-physical activation.


2019 ◽  
Vol 9 (8) ◽  
Author(s):  
Lamia Brahmi ◽  
Farida Kaouah ◽  
Salim Boumaza ◽  
Mohamed Trari

Abstract In the present study, wild date stones (WDS) were used as a novel and sustainable precursor for high-quality activated carbon preparation to be applied for the removal of Acid Blue 25 dye (AB25) from synthetic water. The carbonization temperature of the raw material was selected at 850 °C on the basis of thermo-gravimetric analysis. The adsorbents were characterized by the BET method, Fourier transform infrared spectroscopy, and scanning electron microscopy. The results indicated that the activated carbon presents a high specific surface area (610.84 m2 g−1) and a pore volume (0.224 cm3 g−1) compared with the natural material. Based on the central composite design, the effect of different parameters such as the biomass dose, initial dye concentration, contact time and temperature was optimized and the optimal removal of AB25 (99.61%) was achieved for AB25 concentration of 100 mg L−1 and an adsorbent dose of 0.8 g L−1, at 45 °C after 120 min. The kinetic studies indicated that the pseudo-second-order model was appropriately applied for the adsorption kinetic of AB25 onto wild date stones activated carbon. The intraparticle diffusion model is not the only controlling step, and other mechanisms may be involved in the adsorption process. The Langmuir isotherm provided the best fit with a high correlation coefficient (R2) of 0.993 and a maximum monolayer adsorption capacity of 181.59 mg g−1.


2013 ◽  
Vol 16 (1) ◽  
pp. 22-31
Author(s):  
Phung Thi Kim Le ◽  
Kien Anh Le

Agricultural wastes are considered to be a very important feedstock for activated carbon production as they are renewable sources and low cost materials. This study present the optimize conditions for preparation of durian peel activated carbon (DPAC) for removal of methylene blue (MB) from synthetic effluents. The effects of carbonization temperature (from 673K to 923K) and impregnation ratio (from 0.2 to 1.0) with potassium hydroxide KOH on the yield, surface area and the dye adsorbed capacity of the activated carbons were investigated. The dye removal capacity was evaluated with methylene blue. In comparison with the commercial grade carbons, the activated carbons from durian peel showed considerably higher surface area especially in the suitable temperate and impregnation ratio of activated carbon production. Methylene blue removal capacity appeared to be comparable to commercial products; it shows the potential of durian peel as a biomass source to produce adsorbents for waste water treatment and other application. Optimize condition for preparation of DPAC determined by using response surface methodology was at temperature 760 K and IR 1.0 which resulted the yield (51%), surface area (786 m2/g), and MB removal (172 mg/g).


2017 ◽  
Vol 36 (3) ◽  
pp. 44-53
Author(s):  
G. D. Akpen ◽  
M. I. Aho ◽  
N. Baba

Activated carbon was prepared from the pods of Albizia saman for the purpose of converting the waste to wealth. The pods were thoroughly washed with water to remove any dirt, air- dried and cut into sizes of 2-4 cm. The prepared pods were then carbonised in a muffle furnace at temperatures of 4000C, 5000C, 6000C ,7000C and 8000C for 30 minutes. The same procedure was repeated for 60, 90, 120 and 150 minutes respectively. Activation was done using impregnationratios of 1:12, 1:6, 1:4, 1:3, and 1:2 respectively of ZnCl2 to carbonised Albizia saman pods by weight. The activated carbon was then dried in an oven at 1050C before crushing for sieve analysis. The following properties of the produced Albizia saman pod activated carbon (ASPAC) were determined: bulk density, carbon yield, surface area and ash, volatile matter and moisture contents. The highest surface area of 1479.29 m2/g was obtained at the optimum impregnation ratio, carbonization time and temperature of 1:6, 60 minutes and 5000C respectively. It was recommended that activated carbon should be prepared from Albizia saman pod with high potential for adsorption of pollutants given the high surface area obtained.Keywords: Albizia saman pod, activated carbon, carbonization, temperature, surface area


Sign in / Sign up

Export Citation Format

Share Document