scholarly journals Preparation and Characterization of SnO2 / AC as a Novel High Surface Area Nanocatalyst

Author(s):  
Abdul Rahman Y. Wahoud ◽  
Salim F. Bamsaoud ◽  
Mohammed A. Al-Haiqi

A new solid nanoparticle sorbent (SnO2 / AC) could serve as high surface area and inexpensive nanocatalyst was prepared. Many properties were characterized by SEM and UV spectroscopy. High surface area, large micro pore volume and total pore volume were found to be 571 m2 g−1, 0.4785 cm3 g−1 and 0.7267 cm3 g−1 respectively even with very high loaded ratio (60 %) of tin dioxide to Activated Carbon (SnO2 / AC). Taguchi factorial design method was used to get the maximum MB dye adsorption on the surface of SnO2 / AC nanoparticle sorbent. Contact time (60 min), initial dye concentration (5 mM) and solution temperature (293 K) were found to be the best conditions for the more effective absorption process.

RSC Advances ◽  
2014 ◽  
Vol 4 (85) ◽  
pp. 45244-45250 ◽  
Author(s):  
Yun Meng ◽  
Liyuan Zhang ◽  
Liyuan Chai ◽  
Wanting Yu ◽  
Ting Wang ◽  
...  

PmPD nanobelts with high adsorption performance have been synthesized by using CTAP as oxidants.


2016 ◽  
Vol 75 (2) ◽  
pp. 350-357
Author(s):  
Graham Dawson ◽  
Wei Chen ◽  
Luhua Lu ◽  
Kai Dai

The adsorption properties of two nanomorphologies of trititanate, nanotubes (TiNT) and plates (TiNP), prepared by the hydrothermal reaction of concentrated NaOH with different phases of TiO2, were examined. It was found that the capacity for both morphologies towards methylene blue (MB), an ideal pollutant, was extremely high, with the TiNP having a capacity of 130 mg/g, higher than the TiNT, whose capacity was 120 mg/g at 10 mg/L MB concentration. At capacity, the well-dispersed powders deposit on the floor of the reaction vessel. The two morphologies had very different structural and adsorption properties. TiNT with high surface area and pore volume exhibited exothermic monolayer adsorption of MB. TiNP with low surface area and pore volume yielded a higher adsorption capacity through endothermic multilayer adsorption governed by pore diffusion. TiNP exhibited a higher negative surface charge of −23 mV, compared to −12 mV for TiNT. The adsorption process appears to be an electrostatic interaction, with the cationic dye attracted more strongly to the nanoplates, resulting in a higher adsorption capacity and different adsorption modes. We believe this simple, low cost production of high capacity nanostructured adsorbent material has potential uses in wastewater treatment.


Author(s):  
Ali H. Jawad ◽  
Ahmed Saud Abdulhameed ◽  
Noor Nazihah Bahrudin ◽  
Nurul Nadiah Mohd Firdaus Hum ◽  
S. N. Surip ◽  
...  

Abstract In this work, sugarcane bagasse waste (SBW) was used as a lignocellulosic precursor to develop a high surface area activated carbon (AC) by thermal treatment of the SBW impregnated with KOH. This sugarcane bagasse waste activated carbon (SBWAC) was characterized by means of crystallinity, porosity, surface morphology and functional groups availability. The SBWAC exhibited Type I isotherm which corresponds to microporosity with high specific surface area of 709.3 m2/g and 6.6 nm of mean pore diameter. Further application of SBWAC as an adsorbent for methylene blue (MB) dye removal demonstrated that the adsorption process closely followed the pseudo-second order kinetic and Freundlich isotherm models. On the other hand, thermodynamic study revealed the endothermic nature and spontaneity of MB dye adsorption on SBWAC with high acquired adsorption capacity (136.5 mg/g). The MB dye adsorption onto SBWAC possibly involved electrostatic interaction, H-bonding and π-π interaction. This work demonstrates SBW as a potential lignocellulosic precursor to produce high surface area AC that can potentially remove more cationic dyes from the aqueous environment.


2017 ◽  
Vol 1 (6) ◽  
pp. 1414-1424 ◽  
Author(s):  
Michael Cox ◽  
Robert Mokaya

Mesoporous carbons (with up to 95% of pore volume from mesopores) with surface area and pore volume of ∼4000 m2 g−1 and ∼3.6 cm3 g−1, respectively, are excellent CO2 absorbers under pre combustion conditions and can store 55 mmol g−1 (i.e., 2.42 g g−1) or 930 g l−1 at 25 °C and 50 bar.


2016 ◽  
Vol 35 (6) ◽  
pp. 535-541 ◽  
Author(s):  
Hongying Xia ◽  
Jian Wu ◽  
Chandrasekar Srinivasakannan ◽  
Jinhui Peng ◽  
Libo Zhang

AbstractThe present work attempts to convert bamboo into a high surface area activated carbon via microwave heating. Different chemical activating agents such as KOH, NaOH, K2CO3 and Na2CO3 were utilized to identify a most suitable activating agent. Among the activating agents tested KOH was found to generate carbon with the highest porosity and surface area. The effect of KOH/C ratio on the porous nature of the activated carbon has been assessed. An optimal KOH/C ratio of 4 was identified, beyond which the surface area as well as the pore volume were found to decrease. At the optimized KOH/C ratio the surface area and the pore volume were estimated to be 3,441 m2/g and 2.093 ml/g, respectively, with the significant proportion of which being microporous (62.3%). Activated carbon prepared under the optimum conditions was further characterized using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM). Activated carbons with so high surface area and pore volume are very rarely reported, which could be owed to the nature of the precursor and the optimal conditions of mixture ratio adopted in the present work.


2007 ◽  
Vol 19 (17) ◽  
pp. 4367-4372 ◽  
Author(s):  
Ajayan Vinu ◽  
Pavuluri Srinivasu ◽  
Dhanashri P. Sawant ◽  
Toshiyuki Mori ◽  
Katsuhiko Ariga ◽  
...  

2016 ◽  
Vol 857 ◽  
pp. 475-479 ◽  
Author(s):  
M.S. Mohammed Yahya ◽  
Jeyashelly Andas ◽  
Ghani Zaidi Ab

In this work, mesoporous activated carbon with high surface area was synthesized from swamp taro stalk by single step ZnCl2 activation. The synthesized activated carbon was characterized by Na2S2O3 volumetric method, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM) and N2 adsorption-desorption analyses. Under the single step ZnCl2 activation, the registered iodine number, BET surface area, total pore volume and pore diameter were 1087.57 mgg-1, 1242.26 m2g-1, 0.73cm3g-1 and 3.72 nm respectively with yield of 25.34%. SEM analysis evidenced the well-formation of porous structure. Type IV isotherm with H2 loops obtained from N2-sorption studies indicates the ink bottles shape mesoporous network structure. This research proved the successful conversion of plant waste into high grade activated carbon.


2007 ◽  
Vol 100 (1-3) ◽  
pp. 1-5 ◽  
Author(s):  
Jun Jie Niu ◽  
Jian Nong Wang ◽  
Ying Jiang ◽  
Lian Feng Su ◽  
Jie Ma

ACS Nano ◽  
2017 ◽  
Vol 11 (11) ◽  
pp. 11047-11055 ◽  
Author(s):  
Luis Estevez ◽  
Venkateshkumar Prabhakaran ◽  
Adam L. Garcia ◽  
Yongsoon Shin ◽  
Jinhui Tao ◽  
...  

RSC Advances ◽  
2014 ◽  
Vol 4 (18) ◽  
pp. 9126-9132 ◽  
Author(s):  
Wenzhong Shen ◽  
Tuoping Hu ◽  
Weibin Fan

Nanosheet porous carbon with high surface area and pore volume, unique compositional and structural features endow the nitrogen-doped porous carbon nanosheets with superior CO2 adsorption performance.


Sign in / Sign up

Export Citation Format

Share Document